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Prólogo

Sobre la Mecánica

Galileo Galilei

La Mecánica es la ciencia del movimiento, es decir el

conjunto de reglas que nos permiten predecir cómo cam-

biarán con el tiempo las mediciones realizadas sobre un

sistema físico.

Su origen se remonta a los antiguos griegos, principal-

mente en la figura de Aristóteles y sus ideas de causa-

lidad y de ley natural. En su forma moderna, se funda en

el célebre trabajo de Isaac Newton Philosophiæ naturalis

principia mathematica publicado en 1687. En él, Newton

propuso una descripción matemática unificada, englo-

bando las observaciones terrestres que Galielo Galilei

había resumido en su principio de inercia, junto a las

tres leyes empíricas que había formulado Johannes Kepler para describir el movimiento de los

cuerpos celestes. En este sentido, se trató de la primera unificación de la física, y sería seguida

por otras en los siglos subsiguientes. Puede decirse que el trabajo de Newton se encuentra en la

base de la revolución científica, cuyas consecuencias resultaron en una completa reorganización

social y una mejora sustancial en la calidad de vida de la humanidad. La Mecánica se desarrolló

enormemente durante los siglos XVIII y XIX, siendo de particular interés para los fines de este

curso las contribuciones de Joseph-Louis Lagrange y William Rowan Hamilton, quienes dieron

forma a lo que hoy conocemos como Mecánica Analítica.
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En la segunda mitad del siglo XIX, los trabajos de Ludwig Boltzmann demostraron que las leyes de

la Mecánica podían combinarse con las ideas de probabilidad, para aplicarlas al comportamiento

de un gran número de partículas. Esta construcción predecía correctamente muchas propiedades

de los sistemas macroscópicos, motivando la unificación de Mecánica y Termodinámica que

hoy conocemos como Mecánica Estadística. Casi en paralelo, otra unificación tenía lugar en

la física: la de la Óptica, la Electricidad y el Magnetismo, dando lugar a lo que llamamos hoy

Electromagnetismo. A principios del siglo XX una de las consecuencias del Electromagnetismo,

en particular el carácter absoluto de la velocidad de la luz, parecía contradecir los principios de la

Mecánica. Esta oposición fue resuelta por Albert Einstein, quien modificó la Mecánica unificándola

con el Electromagnetismo en la forma de la Mecánica Relativista. Diez años más tarde, Einstein

incluiría también a la Gravitación, al formular su célebre teoría de la Relatividad General.

Hasta ese momento histórico, la Mecánica Analítica había resistido la unificación con otras áreas

de la física sin mayores modificaciones, y parecía explicar la totalidad de los fenómenos. Sin

embargo, su némesis llegaría al confrontarla con la Química: una descripción mecánica de la

estructura atómica, y en particular de la interacción de los átomos con la luz, parecía requerir de la

hipótesis extra de cuantización. Según este principio, la energía se intercambiaría entre sistemas

físicos en forma de paquetes o cuantos de valor fijo. Esta idea resistió su incorporación en las

leyes generales de la Mecánica, siendo en cambio compatible con una descripción ondulatoria

del movimiento. En consecuencia, para el estudio de sistemas a la escala atómica la Mecánica

fue reemplazada por una nueva teoría, basada en principios muy diferentes, que hoy llamamos

Mecánica Cuántica.

La Mecánica Cuántica incluye a la Mecánica Analítica cuando los cuerpos que describimos son

lo suficientemente grandes. Este límite clásico hace que el estudio de la Mecánica siga siendo

fundamental para la comprensión de una enorme variedad de fenómenos físicos. Más aún, sabemos

hoy que varias de las leyes de la Mecánica Analítica contenían desde su formulación algunos

rastros de su origen cuántico, por lo que su análisis permitía predecir la necesidad de una ulterior

modificación.

Sobre estas Notas

Este libro está basado en los cursos dictados en el Departamento de Física de la Universidad

Nacional de La Plata durante los años 2020 y 2021, para estudiantes de la Licenciatura en Física.

Durante esos años, la pandemia de COVID19 impuso el formato de clases virtuales a través de

videoconferencia. Para las mismas, resultó de enorme utilidad la combinación del software de

videoconferencias Jitsi con la pizarra virtual HedgeDoc. Al final de cada clase, lo escrito en la

pizarra quedaba disponible en formato MarkDown, y se publicaba en Internet para consulta de los

estudiantes. Dichas notas constituyeron la semilla de este texto



La primera parte se concentra en el formalismo básico. Esto incluye la formulación newtoniana

de la Mecánica, que es la que se estudia en los cursos básicos de física. En ella, las nociones

de fuerza y partícula cumplen un rol central. Suele estar descripta en términos de un conjunto de

vectores cuyas componentes se escriben en un sistema cartesiano de coordenadas, configurando

lo que llamamos mecánica vectorial. La reescritura de las ecuaciones involucradas en coordenadas

curvilíneas generales conduce a la formulación lagrangiana, en la que toda la información de

la dinámica del sistema está contenida en una sola función o lagrangiano, que depende de las

coordenadas generalizadas y velocidades generalizadas de sus partículas.

La segunda parte se dedica a las aplicaciones. El formalismo básico se utiliza en la descripción del

movimiento de dos sistemas mecánicos de gran interés: el sistema de dos cuerpos con interacción

central, y el cuerpo rígido. Respecto del primero, se discuten sus propiedades generales y sus

consecuencias para el estudio del movimiento planetario y del fenómeno de la dispersión. En

cuanto al segundo, se describe la dinámica de un cuerpo rígido libre y el movimiento del trompo.

Recorriendo este camino, se adquiere práctica en la descripción del movimiento en términos del

formalismo lagrangiano, aprovechando sus principales virtudes.

En la tercera parte se estudian las consecuencias conceptuales de la formulación lagrangiana. En

particular, se formaliza la reducción mediante truncaciones y vínculos del número de variables

que describen el movimiento, y luego se aprende a relajar los vínculos permitiendo pequeñas

oscilaciones. Se formula el principio de acción estacionaria, en el cual las ecuaciones que describen

el movimiento se deducen minimizando una cierta cantidad. Se explora la relación entre simetrías

y cargas conservadas demostrando el teorema de Nœther, que es uno de los resultados más

profundos e importantes de la física teórica.

La cuarta parte desarrolla la formulación hamiltoniana. Se exploran las consecuencias que el

principio general de reversibilidad tiene en la forma de las ecuaciones de movimiento de un sistema

mecánico. Se define una manera de combinar magnitudes observables conocida como paréntesis

de Poisson, que permite reformular la Mecánica Analítica poniendo en evidencia su similitud con

la Mecánica Cuántica. Se exploran también las transformaciones canónicas y la ecuación de

Hamilton-Jacobi, que es una huella en la mecánica de las partículas del carácter ondulatorio

de la función de onda. Finalmente, se discute la incorporación de vínculos en la formulación

hamiltoniana.

Disfruté mucho del dictado de este curso, que se refiere a una de las áreas más elegantes de la

Física Teórica. Espero humildemente haber podido retratar en estas notas algo de su belleza.
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1. Formulación newtoniana

1.1 Objetivos

Sin Isaac Newton

En esta clase haremos un breve repaso de las leyes

de la mecánica en la forma en las que las aprendimos

en los cursos básicos de Física, algo que en adelante

referiremos como formulación newtoniana. Dado que tra-

bajaremos exclusivamente en coordenadas cartesianas

y haremos uso intensivo de vectores, denotaremos este

conjunto de conocimientos como mecánica vectorial.

Además de recordar algunos elementos básicos que ne-

cesitaremos para el resto del curso, nos interesa aquí

puntualizar una variedad de aspectos novedosos que

serán importantes en las clases subsiguientes. Nos con-

centraremos por ahora en la descripción de sistemas

mecánicos formados por partículas, lo que nos permitirá

más adelante explorar sus generalizaciones.

1.2 Mecánica vectorial

La mecánica vectorial se basa en la intuición de que las reglas que determinan evolución temporal

de los sistemas físicos pueden comprenderse completamente en términos de las que rigen la

evolución de cada una de sus partes y las interacciones entre ellas.

Intentemos darle una forma más concreta a esta idea.
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Comencemos con un sistema físico cualquiera, del cual siempre se puede dar una descripción

macroscópica en términos de un conjunto de cuerpos (objetos que se resisten a la deformación, si

bien no es necesario por ahora asumir que sean completamente rígidos) y un conjunto de fluidos

(objetos que se deforman fácilmente, aunque tal vez oponiendo alguna resistencia).

Si ahora refinamos nuestra descripción, observando el mismo sistema a través de una lupa o

un microscopio, veremos que cada una de sus partes está a su vez formada por un conjunto de

cuerpos y un conjunto de fluidos.

Aumentando iterativamente la resolución de nuestra lupa, podemos continuar mejorando nuestra

descripción. La idea central de la mecánica vectorial es que este proceso de refinamiento conduce

en algún punto a una descripción del sistema hecha completamente en términos de objetos muy

simples, que llamamos partículas.

Una partícula es un objeto que, a la escala a la que observamos nuestro sistema, está completa-

mente descripto solamente por su posición, por lo que no es necesario hacer consideraciones

sobre su orientación ni sobre su estado de deformación. En este sentido, es el sistema mecánico

más simple posible, que no requiere ser caracterizado como cuerpo o fluido. Nótese que no

estamos asumiendo que las partículas no tengan partes, sino solamente que a la escala a la que

llegamos a ver con nuestro microscopio estas partes no son visibles y no juegan ningún rol en la

descripción del movimiento del sistema.

1.2.1 Leyes de Newton

Supongamos entonces que el universo entero, es decir el conjunto de todo lo que observamos,

está formado por N partículas, que indexaremos con un índice n ∈ {1,2, . . . ,N }. Su movimiento

estará regido por las leyes de Newton, que se enuncian como sigue:

1. Existencia de un sistema inercial

A los fines de cualquier experimento, un sistema inercial se define tomando una partícula

lo suficientemente alejada de todos los demás objetos del universo, y poniendo en ella el

origen de un sistema de coordenadas cartesiano, cuyos ejes son perpendiculares entre sí, y

están inmóviles respecto de las estrellas lejanas.

Un sistema inercial asume también la existencia de un reloj, que es un conjunto de partículas

que realizan movimientos periódicos, retornando repetidamente a la misma configuración.

Cualquier otro sistema de coordenadas cartesianas que se mueva con movimiento rectilíneo

y uniforme respecto del arriba definido, y cuyos ejes no estén girando respecto de él, también

es un sistema inercial. Más aún, cualquier otro sistema inercial estará en movimiento rectilíneo

y uniforme respecto del que ya definimos, y sus ejes no estarán girando. Aquí, un movimiento

uniforme es uno en el cual se recorre la misma distancia en cada período del reloj.
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Un detalle muy importante es que esta ley no es un caso especial de la segunda ley: no

hemos hablado aquí de lo que pasa “en ausencia de fuerzas” porque aún no hemos definido

lo que es una fuerza.

2. Ley de fuerza

En un sistema inercial la posición de la partícula n-ésima del universo se describe con un

vector~rn ∈ R3, y llamamos tiempo al número t ∈ R de períodos que ha recorrido el reloj.

Naturalmente~rn será una función de t, y podemos denotar a su derivada temporal o velocidad

como ~̇rn = d~r/dt. Además, para cada una de las partículas del universo existe otro vector

momento lineal ~pn que es una función de la velocidad ~̇rn. Este vector satisface la ley de

fuerza

~Fn =
d~pn

dt

donde ~Fn es la fuerza que actúa sobre la partícula n-ésima, y es una función de las posiciones

y velocidades de todas las partículas del universo, y eventualmente también del tiempo. Esta

función debe cumplir una serie de condiciones de consistencia:

Primero que nada, si una de las partículas de nuestro sistema está lo bastante lejos de

todas las demás, su posición~rn es por definición el origen de otro sistema inercial. Pero

dijimos en la primera ley que los sistemas inerciales están en movimiento rectilíneo y

uniforme entre sí. Esto implica que la velocidad de dicha partícula ~̇rn debe ser necesa-

riamente constante. Como el momento lineal ~pn es una función de la velocidad, este

también debe ser constante d~pn/dt = 0. Con esto, concluimos que para una partícula

muy alejada de todas las otras, se debe cumplir que ~Fn = 0. En otras palabras, la fuerza

se anula cuando las partículas se alejan lo suficiente.

Supongamos ahora que tenemos dos sistemas inerciales en reposo uno respecto del

otro, relacionados por una rotación de ángulo θ alrededor de un eje que apunta en la

dirección ň. Si la velocidad de una partícula es ~̇rn en el primer sistema, en el otro estará

dada por un vector rotado un ángulo θ alrededor de ň. La misma observación debe

ser válida para el momento lineal ~pn, que en el sistema rotado habrá girado un ángulo

θ alrededor de ň. Esto debe cumplirse para cualquier par de sistemas inerciales en

reposo relativo. Es fácil convencerse de que esto solo es posible si la relación entre

ambos es la proporcionalidad ~pn = mn~̇rn. Aquí mn es una función de ~̇rn que tiene que ser

invariante frente a rotaciones, es decir que tiene que ser una función de ṙ2
n.

La forma precisa de mn como función de ṙ2
n depende de cómo se transforme el tiempo

entre los diferentes sistemas inerciales. Si los relojes se sincronizan de modo tal que

la velocidad de la luz c sea la misma en todos los sistemas, sabemos que se debe

cumplir mn =mrep
n /
√

1− ṙ2
n/c

2 donde mrep
n es la masa en reposo. En el límite de pequeñas

velocidades ṙ2
n � c2 tenemos que mn ≈ mrep

n . Buena parte de lo que vamos a discutir a

continuación y en el resto del curso se sostiene para una función mn arbitraria.
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3. Ley de acción y reacción

Para enunciar esta ley tenemos que hacer la hipótesis de que las fuerzas satisfacen una

suerte de principio de superposición. En efecto, vamos a suponer que la fuerza sobre

cualquier partícula se puede descomponer de la siguiente manera

~Fn =
N

∑
m=1

~Fm→n

donde la suma recorre todas las partículas del universo, y el símbolo ~Fm→n representa la

fuerza que la partícula m-ésima ejerce sobre la partícula n-ésima. La ley de acción y reacción

dice que para cualquier par de partículas, estas fuerzas cumplen

~Fm→n =−~Fn→m

Nótese que en particular esto implica ~Fn→n =−~Fn→n, por lo que la autofuerza debe anularse

~Fn→n = 0 y la suma de más arriba corre solamente sobre m 6= n.

Si de entre las N partículas que componen el universo seleccionamos un subconjunto de N de

ellas, tendremos un sistema de N partículas. La configuración dicho sistema estará dada por los N

vectores~rn ∈R3 que representan la posición de cada una de las partículas en algún sistema inercial

en un dado instante de tiempo. Definimos entonces un espacio de configuración del sistema de N

partículas como C = R3N .

La posición cambiará a medida que transcurre el tiempo describiendo una curva en el espacio de

configuración C que se denomina la trayectoria del sistema. Tanto la forma de tal curva cuanto la

velocidad con la que se la recorre a medida que transcurre el tiempo, se obtienen resolviendo un

conjunto de ecuaciones de movimiento dadas por la ley de fuerza. Nótese de que hay una ecuación

vectorial para cada partícula, resultando en un total de 3N ecuaciones. En estas ecuaciones, las

fuerzas sobre cada partícula ~Fn deben satisfacer la ley de acción y reacción.

Las ecuaciones de movimiento son ecuaciones diferenciales de segundo orden en el tiempo, por lo

que cada una de ellas resultará en dos constantes de integración. Dado que tenemos un conjunto

de 3N ecuaciones, deberemos determinar un total de 6N constantes. Para esto, será necesario

especificar las condiciones iniciales, es decir los valores iniciales para los vectores posición~rn y

velocidad ~̇rn de cada una de las partículas. Estos valores iniciales determinan completamente la

evolución ulterior, es decir que definen el estado del sistema. Podemos hablar entonces de un

espacio de estados dado por E = R6N .

Los sistemas físicos difieren entre sí en el número de partículas, y en la forma explícita de la fuerza

~Fn como función de la posición y la velocidad de todas las partículas del universo, y de la masa mn

como función de ṙ2
n.
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Nota:

Escribe Isaac Asimov: sobre ¿Quién fue el científico más grande de la historia?:

«Si la pregunta fuese ¿Quién fue el segundo científico más grande? sería imposible

de contestar. Hay por lo menos una docena de hombres que, en mi opinión, podrían

aspirar a esa segunda plaza. Entre ellos figurarían, por ejemplo, Albert Einstein, Ernest

Rutherford, Niels Bohr, Louis Pasteur, Charles Darwin, Galileo Galilei, Clerk Maxwell,

Arquímedes y otros.

Incluso es muy probable que ni siquiera exista eso que hemos llamado el segundo

científico más grande. Las credenciales de tantos y tantos son tan buenas y la dificultad

de distinguir niveles de mérito es tan grande, que al final quizá tendríamos que declarar

un empate entre diez o doce.

Pero como la pregunta es «¿Quién es el más grande?», no hay problema alguno. En mi

opinión, la mayoría de los historiadores de la ciencia no dudarían en afirmar que Isaac

Newton fue el talento científico más grande que jamás haya visto el mundo. Tenía sus

faltas, viva el cielo: era un mal conferenciante, tenía algo de cobarde moral y de llorón

autocompasivo y de vez en cuando era víctima de serias depresiones. Pero como

científico no tenía igual.

Fundó las matemáticas superiores después de elaborar el cálculo. Fundó la óptica

moderna mediante sus experimentos de descomponer la luz blanca en los colores del

espectro. Fundó la física moderna al establecer las leyes del movimiento y deducir sus

consecuencias. Fundó la astronomía moderna estableciendo la ley de la gravitación

universal.

Cualquiera de estas cuatro hazañas habría bastado por sí sola para distinguirle como

científico de importancia capital. Las cuatro juntas le colocan en primer lugar de modo

incuestionable.»

Las tres leyes arriba enumeradas, cuyas consecuencias exploramos en los cursos básicos de

física, nos permitieron construir a partir de ellas una enorme variedad de resultados. En particular,

no solo pudimos describir la dinámica de una partícula y de un sistema de partículas, sino también

la de los cuerpos rígidos, de los cuerpos elásticos, y de los fluidos. De particular interés para

nosotros son los teoremas de conservación, que se resumen en lo que sigue.

1.2.2 Teoremas de conservación

Dado un sistema físico formado por N partículas, podemos separar todas las partículas del universo

entre aquéllas que son internas al sistema n ∈ {1,2, . . . ,N} y aquéllas que son externas al mismo

n ∈ {N + 1,N + 2 . . . ,N }. Una consecuencia de la descomposición de la fuerza que hicimos al
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explicar la ley de acción y reacción más arriba es que se puede escribir

~Fn =
N

∑
m=1

~Fm→n +
N

∑
m=N+1

~Fm→n

Al segundo término lo llamamos fuerza externa sobre la partícula n-ésima y lo denotamos ~Fext
n , lo

que nos deja con la expresión

~Fn =
N

∑
m=1

~Fm→n +~Fext
n

donde ahora la suma corre solamente sobre las partículas internas al sistema. Esta descomposición

resulta muy útil para obtener los siguientes resultados

Conservación del momento lineal

Si usamos la descomposición de la fuerza entre la contribución externa y la interna podemos

reescribir la ley de fuerza en la forma

N

∑
m=1

~Fm→n +~Fext
n =

d~pn

dt

Ahora podemos sumar a ambos lados sobre todas las partículas de nuestro sistema, para

obtener

N

∑
n=1

N

∑
m=1

~Fm→n +
N

∑
n=1

~Fext
n =

N

∑
n=1

d~pn

dt

Si definimos la fuerza externa total ~Fext = ∑
N
n=1

~Fext
n sobre el sistema y el momento lineal total

del mismo ~p = ∑
N
n=1~pn, la igualdad de más arriba se puede reescribir como

N

∑
n=1

N

∑
m=1

~Fm→n +~Fext =
d~p
dt

En la suma en el primer término cada par de partículas m y n entra dos veces, una vez como

~Fm→n y otra como ~Fn→m. Esto nos permite reescribir la suma limitando los índices con la

restricción m > n, para obtener

N

∑
n=1

N

∑
m=n+1

(
~Fm→n +~Fn→m

)
+~Fext =

d~p
dt

(nótese el cambio de índices en el segundo término dentro de la suma, para que ahora cada

par entre una sola vez). Pero entonces la ley de acción y reacción implica inmediatamente

que el primer término se anula, dejándonos con

~Fext =
d~p
dt

De aquí deducimos que si la fuerza externa total sobre un sistema de partículas se anula,

entonces el momento lineal total se conserva.

Conservación del momento angular

Volviendo a la expresión para la segunda ley de Newton en términos de fuerzas externas e

internas

N

∑
m=1

~Fm→n +~Fext
n =

d~pn

dt
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Podemos tomar a cada lado de la igualdad el producto vectorial con la posición ~rn de la

partícula n-ésima, para obtener

N

∑
m=1

~rn ×~Fm→n +~rn ×~Fext
n =~rn ×

d~pn

dt

Integrando por partes el segundo término, y usando que el momento lineal es proporcional a

la velocidad y por lo tanto ~̇rn ×~pn = 0, obtenemos la expresión

N

∑
m=1

~rn ×~Fm→n +~rn ×~Fext
n =

d(~rn ×~pn)

dt

Ahora podemos definir el momento angular de cada partícula respecto del origen de coorde-

nadas según ~̀n =~rn ×~pn y el torque externo sobre cada partícula respecto del origen como

~τext
n =~rn ×~Fext

n . Con esto obtenemos

N

∑
m=1

~rn ×~Fm→n +~τext
n =

d~̀n

dt

En esta expresión podemos sumar sobre todas las partículas del sistema, resultando en

N

∑
n=1

N

∑
m=1

~rn ×~Fm→n +~τext =
d~̀

dt

donde el torque total externo se definió como ~τext = ∑
N
n=1~τ

ext
n y el momento angular total

como ~̀= ∑
N
n=1

~̀n. De nuevo en el primer término cada par de partículas entra dos veces, lo

que nos permite reescribirlo como

N

∑
n=1

N

∑
m=n+1

(
~rn ×~Fm→n +~rm ×~Fn→m

)
+~τext =

d~̀

dt

Usando la ley de acción y reacción podemos reordenar el paréntesis

N

∑
n=1

N

∑
m=n+1

(~rn −~rm)×~Fm→n +~τext =
d~̀

dt

Ahora bien, si hacemos la hipótesis adicional de que las fuerzas internas son centrales, es

decir que la fuerza entre cada par de partículas apunta en la dirección que une las partículas,

entonces (~rn −~rm)×~Fm→n = 0 en el primer término, y llegamos a la expresión

~τext =
d~̀

dt

Con lo que podemos enunciar que si el torque total externo se anula y las fuerzas internas

son centrales, el momento angular total se conserva.

Conservación de la energía

Volvamos a nuestra fórmula inicial para la ley de fuerza, sin separar por ahora entre contribu-

ciones externas e internas

~Fn =
d~pn

dt

Multiplicando esta expresión escalarmente por la velocidad tenemos

~Fn ·~̇rn =
d~pn

dt
·~̇rn



24 Capítulo 1. Formulación newtoniana

Recordemos que ~pn = mn~̇rn donde mn es alguna función de ṙ2
n. Para el caso de una partícula

no relativista mn es simplemente una constante, para el caso relativista tenemos que mn =

mrep
n /
√

1− ṙ2
n/c

2. Cualquiera sea la forma de esta función, sabemos que tiene una primitiva

2Kn que cumple que d(2Kn)/dṙ2
n = mn (donde hemos introducido un factor 2 por conveniencia).

Esta función corresponde a la energía cinética Kn = mnṙ2
n/2 para el caso no-relativista, y a

la expresión Kn = mrep
n c2

√
1− ṙ2

n/c
2 para el caso relativista. Usando esta primitiva podemos

escribir

~Fn ·~̇rn =
dKn

dt

Si ahora integramos entre un instante inicial ti y uno final t f obtenemos

Wn = ∆Kn

En el lado izquierdo hemos definido el trabajo realizado sobre la partícula n-ésima como

Wn =
∫
~Fn ·~̇rn dt, y la variación de su energía cinética según ∆Kn = Kn|t f

− Kn|ti .

Nótese que si la fuerza no depende del tiempo ni de las velocidades, entonces el trabajo

es una integral de línea Wn =
∫
~Fn · d~rn. Esta integral sólo puede depender de la forma de

la fuerza como función de la posición y de la trayectoria que recorre la partícula n-ésima

entre su posición inicial y su posición final. Esta última observación nos permite hacer una

clasificación de las fuerzas. Llamamos conservativas a aquéllas fuerzas para las cuales el

trabajo realizado en un movimiento cualquiera no depende de la trayectoria sino solamente

de los puntos inicial y final. En ese caso escribimos Wn = −∆Vn para una cierta función

energía potencial Vn que es función sólo de la posición~rn. Las fuerzas que no cumplen esta

propiedad se consideran no conservativas, y denotamos el trabajo de las mismas como W nc
n .

Entonces tenemos que

W nc
n −∆Vn = ∆Kn

Ahora podemos sumar sobre n, obteniendo

W nc−∆V = ∆K

con las definiciones obvias para el trabajo total de las fuerzas no conservativas W nc =

∑
N
n=1 W nc

n , la energía potencial total V = ∑
N
n=1 Vn y la energía cinética total K = ∑

N
n=1 Kn. Esto

se puede reescribir como

W nc = ∆E

donde la energía mecánica total se definió como E = K +V .

Entonces podemos decir que en ausencia de fuerzas no-conservativas internas o externas,

la energía mecánica total se conserva.

Estos teoremas de conservación se pueden reinterpretar en términos de principios de simetría, un

resultado importante que reformularemos y reobtendremos más adelante en el curso. Por ahora,

baste señalar que:
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El momento lineal se conserva cuando la fuerza total externa vale cero. Cuando esto sucede,

el movimiento del sistema está completamente determinado por sus fuerzas internas, que

dependen de las posiciones y velocidades de las partículas del sistema, y no guardan ninguna

relación con las posiciones y velocidades del resto de las partículas del universo. Esto implica

que podemos poner el sistema en cualquier lugar del espacio, y su movimiento ulterior no

se verá afectado. En otras palabras, hay invarianza traslacional. Por lo tanto, la invarianza

frente a traslaciones está íntimamente ligada a la conservación del impulso.

El momento angular se conserva cuando el torque total externo vale cero y las fuerzas

internas son centrales. Que el torque total externo se anule implica que la fuerza total externa

también es central, en el sentido de que apunta hacia o desde el origen de coordenadas. Pero

entonces podemos rotar rígidamente el sistema alrededor del origen y su movimiento ulterior

no se verá afectado. Es decir que hay invarianza rotacional. Esto implica que la invarianza

frente a rotaciones está íntimamente relacionada con la conservación del momento angular.

La energía se conserva cuando todas las fuerzas, tanto internas como externas, son con-

servativas. Esto requiere en particular que las fuerzas sean independientes del tiempo, ya

que solamente de ese modo se puede definir el trabajo como una integral de línea que,

en caso de no depender de la trayectoria, implicaría una fuerza conservativa. Por lo tanto

podemos decir que tenemos invarianza frente a traslaciones temporales. Concluimos que la

conservación de la energía está íntimamente relacionada a la invarianza frente a traslaciones

temporales.

1.3 Resumen

En esta clase, repasamos las ideas que se adquieren en los cursos básicos de física, en los que

la mecánica se escribe en términos de las coordenadas cartesianas de un conjunto de partículas

utilizando vectores.

Luego de revisitar las tres leyes de Newton analizando cuidadosamente su significado, introdujimos

los conceptos de espacio de configuración, trayectoria, ecuaciones de movimiento, condiciones

iniciales y espacio de estados. Finalmente, recorrimos los teoremas de conservación, y señalamos

su relación con diferentes tipos de invarianzas en la descripción de un sistema físico.

En las clases que siguen, vamos a explorar las consecuencias de estas leyes para estudiar varios

sistemas mecánicos de interés. Para poder hacerlo con comodidad, nuestro primer paso será

formularlas en una forma que no requiera del uso de sistemas cartesianos y vectores.





2. Coordenadas generalizadas

2.1 Objetivos

Joseph-Louis Lagrange

En la clase anterior repasamos la formulación newtonia-

na de la mecánica en su forma de mecánica vectorial, en

la cual la posición de cada una de las partículas consti-

tuyentes de un dado sistema mecánico está escrita en

coordenadas cartesianas.

En esta clase, vamos a reescribir la segunda ley de New-

ton en coordenadas curvilíneas arbitrarias, lo que nos

permitirá más adelante describir una variedad de siste-

mas mecánicos de interés. En este proceso, descubri-

remos que para una clase de fuerzas bastante general,

las ecuaciones de movimiento pueden escribirse de una

forma única que no depende del sistema de coordenadas

utilizado, en términos de derivadas de una sola función

de las coordenadas curvilíneas y de sus derivadas.

2.2 Coordenadas generalizadas

Como vimos en la clase previa, la configuración de un sistema de N partículas está dada por

N vectores ~rn que determinan un punto en el espacio de configuración C = R3N del sistema.

Quisiéramos ser capaces de describir este espacio reemplazando las {~rn} con n ∈ {1, . . . ,N} por

un conjunto cualquiera de 3N coordenadas generalizadas {qi} con i ∈ {1, . . . ,3N}, relacionadas

con las primeras por un cambio de variables~rn =~rn(qi, t).
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Para obtener la trayectoria del sistema, debemos resolver un conjunto de ecuaciones diferenciales

dado por la segunda ley de Newton para un sistema de partículas, que en términos de las

coordenadas~rn se escribe

~Fn =
d~pn

dt

Una manera directa de obtener la forma de estas ecuaciones en términos de las coordenadas

generalizadas qi sería reemplazando directamente el cambio de variables en las ecuaciones. Pero

esto nos obligaría a reescribir las derivadas temporales segundas de las variables~rn en términos

de las nuevas coordenadas qi y sus derivadas primeras y segundas, usando la regla de la cadena

dos veces. Dependiendo del número de partículas involucrado y de la complejidad del cambio de

variables, esto puede volverse arbitrariamente complicado. En lo que sigue discutimos una técnica

completamente general que nos evita calcular tales derivadas temporales segundas, requiriendo

sólo las derivadas primeras.

2.2.1 Ecuaciones de Lagrange

Recordemos que el impulso se escribe como ~pn = mn~̇rn donde mn es una función de ṙ2
n. Habíamos

llamado 2Kn a la primitiva de mn, y vimos que correspondía a la energía cinética para el caso

no-relativista. También habíamos definido su suma sobre todas las partículas del sistema como

K = ∑
N
n=1 Kn. En este punto nos interesa observar que usando tal término cinético siempre podemos

escribir el momento lineal de cada partícula en la forma

~pn =
∂K
∂~̇rn

Reemplazando en la segunda ley de Newton, tenemos entonces que

~Fn =
d
dt

(
∂K
∂~̇rn

)
Si ahora escribimos~rn =~rn(qi, t) como función de un conjunto arbitrario de coordenadas genera-

lizadas {qi}i∈{1,...,3N}, esta forma de la ley de Newton nos permite considerar a K directamente

como una función de las coordenadas generalizadas qi, las velocidades generalizadas q̇i, y el

tiempo. Podemos explotar esto si multiplicamos escalarmente por ∂~rn/∂qi y sumamos sobre n,

para obtener

~Fn ·
∂~rn

∂qi︸ ︷︷ ︸
Gi

=
d
dt

(
∂K
∂~̇rn

)
· ∂~rn

∂qi

En esta fórmula y en el resto de este texto, el símbolo de sumatoria será sobrentendido cada vez

que un índice se repita dos veces, en lo que se conoce como convención de Einstein. En este

caso la suma que estamos omitiendo corre sobre el índice de partícula n, mientras que el índice

de coordenada i aparece una sola vez a cada lado de la igualdad, y por eso no está sumado. En

el miembro izquierdo de esta ecuación hemos definido la fuerza generalizada Gi asociada a la

coordenada generalizada qi. Reemplazando en ella el cambio de variables, la magnitud Gi queda
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escrita como una función de las coordenadas generalizadas, las velocidades generalizadas, y el

tiempo. En el miembro derecho podemos integrar por partes, obteniendo

Gi =
d
dt

(
∂K
∂~̇rn

· ∂~rn

∂qi

)
− ∂K

∂~̇rn
· d

dt

(
∂~rn

∂qi

)
Nótese que debido a la forma del cambio de variables~rn =~rn(qi, t) tenemos que las velocidades

satisfacen

~̇rn =
∂~rn

∂qi
q̇i +

∂~rn

∂ t

lo que en particular implica la relación entre las derivadas

∂~rn

∂qi
=

∂~̇rn

∂ q̇i

Más aún, a partir de la misma fórmula también podemos probar que

∂~̇rn

∂q j
=

∂ 2~rn

∂q j∂qi
q̇i +

∂ 2~rn

∂q j∂ t
=

d
dt

(
∂~rn

∂q j

)
Usando estas dos últimas fórmulas en el miembro derecho de nuestra segunda ley de Newton en

coordenadas generalizadas, podemos reescribirla como

Gi =
d
dt

(
∂K
∂~̇rn

· ∂~̇rn

∂ q̇i

)
− ∂K

∂~̇rn
· ∂~̇rn

∂qi

O en otras palabras, usando la regla de la cadena

Gi =
d
dt

(
∂K
∂ q̇i

)
− ∂K

∂qi

En esta forma de la segunda ley de Newton tenemos una ecuación para cada coordenada

generalizada qi, en lo que se conoce como ecuaciones de Lagrange.

El punto importante del resultado que hemos obtenido es el siguiente: para escribir las ecuaciones

de Lagrange necesitamos la forma de la fuerza generalizada Gi y del término cinético K como

función de las coordenadas generalizadas qi y las velocidades generalizadas q̇i, y eventualmente

del tiempo. Esto sólo involucra calcular derivadas temporales primeras del cambio de variables,

con lo que nos hemos ahorrado bastante trabajo.

Podemos usar este resultado para escribir la ley de fuerza en un sistema de coordenadas general,

no necesariamente cartesiano. Por ejemplo, podríamos describir la posición de cada partícula en

coordenadas esféricas, o cilíndricas. Podríamos incluso usar sistemas de coordenadas en donde

cada una de las variables no se refiera a una sola partícula sino a alguna combinación de ellas.

Podemos también usar sistemas no necesariamente inerciales, donde el cambio de coordenadas

depende del tiempo.

Ejemplo: partícula en coordenadas polares en el plano

Supongamos que dadas las coordenadas cartesianas para una partícula en el plano

~r = (x,y), queremos describir su movimiento en coordenadas polares {qi}= {r,θ}. El

cambio de variables tiene la forma

x = r cosθ y = r sinθ
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Tomando una derivada temporal obtenemos para la velocidad

ẋ = ṙ cosθ − rθ̇ sinθ ẏ = ṙ sinθ + rθ̇ cosθ

Si quisiéramos insertar esto directamente en la ley de fuerza, tendríamos que tomar

una derivada más para obtener la aceleración. Se puede ver que cada una de las

derivadas segundas resultantes tiene al menos cinco términos, lo que complica bastante

la obtención de las ecuaciones de movimiento.

Sin embargo, con lo calculado hasta ahora nos alcanza para escribir el término cinético

K. Éste toma la forma

K =
1
2

m~̇r2 =
1
2

m
(
ṙ2 + r2

θ̇
2)

Donde usamos que cos2 θ + sin2
θ = 1 y por otro lado los productos cruzados contenien-

do sinθ cosθ se cancelaron.

También podemos escribir la fuerza generalizada Gi = {Gr,Gθ}, para la que tenemos

la formula

Gr = ~F · ∂~r
∂ r

= ~F · (cosθ ,sinθ)︸ ︷︷ ︸
ř

≡ Fr

Gθ = ~F · ∂~r
∂θ

= ~F · (−r sinθ ,r cosθ)︸ ︷︷ ︸
rθ̌

= xFy − yFx ≡ τz

En la primera ecuación vemos que la fuerza generalizada en la dirección de r viene dada

por el producto escalar entre el vector fuerza y un versor que apunta en la dirección

radial. Es decir que corresponde a la componente radial de la fuerza. En la segunda

vemos que para la fuerza generalizada en la dirección de θ nos queda el producto

vectorial entre el radio y la fuerza, es decir el torque. Esto es una realización concreta

de la idea intuitiva de que el torque es para los ángulos lo que la fuerza es para el

vector posición.

Reemplazando estos resultados en las ecuaciones de Lagrange

Gr =
d
dt

(
∂K
∂ ṙ

)
− ∂K

∂ r
Gθ =

d
dt

(
∂K
∂ θ̇

)
− ∂K

∂θ

obtenemos explícitamente

Fr = mr̈−mrθ̇
2 = mr̈+macen = mr̈−Fcen

τ =
d
dt
(mr2

θ̇) =
d
dt
(I ω) =

d`
dt

Vemos que con este tratamiento aparecen automáticamente todos los conceptos

relacionados con el movimiento angular, tales como el torque τ, el momento de iner-

cia I = mr2, la velocidad angular ω, la aceleración centrípeta acen =−rθ̇ 2, la fuerza

centrífuga Fcen = mrθ̇ 2, y el momento angular `= mr2θ̇ .
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Ejercicio:

Pruebe que para un conjunto de N partículas no relativistas, la energía cinética es

una función cuadrática de las velocidades generalizadas. En otras palabras, podemos

escribir

K =
1
2

Ki j(qi) q̇iq̇ j

Donde los coeficientes Ki j(qi) son funciones de las coordenadas generalizadas y las

masas de las partículas involucradas.

Esta estructura para la energía cinética será muy frecuente en los problemas estudiados

en lo que sigue.

Por analogía a la expresión que obtuvimos en coordenadas cartesianas ~pn = ∂K/∂~̇rn podemos

definir los momentos generalizados como

pi =
∂K
∂ q̇i

Dado que la energía cinética es una función de las coordenadas y velocidades generalizadas, los

impulsos generalizados también lo serán. Las ecuaciones de Lagrange quedan entonces escritas

como

Gi +
∂K
∂qi

=
d pi

dt

Esta fórmula se puede expresar en palabras como la fuerza generalizada más la pseudofuerza

generalizada es igual a la derivada del impulso generalizado respecto del tiempo

Ejemplo: partícula en coordenadas polares en el plano

Volviendo al ejemplo de arriba de una partícula en el plano en coordenadas polares,

podemos usar la forma del término cinético K para obtener los impulsos generalizados

pr =
∂K
∂ ṙ

= mṙ pθ =
∂K
∂θ

= mr2
θ̇

Es decir que el impulso generalizado en la dirección r no es más que el impulso radial.

Por otro lado, el impulso generalizado en la dirección θ resulta ser el momento angular.

En efecto, tenemos que ` = |~r ×~p| = rpsin r̂p =mrv sin r̂p. Usando el hecho de que

vsin r̂p es la componente tangencial de la velocidad, que sabemos vale rθ̇ , podemos

reescribir `=mr2θ̇ . Esto realiza de manera concreta la idea intuitiva de que “el momento

angular es para los ángulos lo que el vector impulso es al vector posición.”

Ahora bien ¿cuál es el orden de las ecuaciones de Lagrange? Observando que tanto la fuerza

generalizada Gi como el término cinético K son funciones de las coordenadas generalizadas q j,

las velocidades generalizadas q̇ j, y el tiempo, podemos usar la regla de la cadena para escribir

Gi =
d
dt

(
∂K
∂ q̇i

)
− ∂K

∂qi
=

∂ 2K
∂ q̇i∂ q̇ j

q̈ j +
∂ 2K

∂ q̇i∂q j
q̇ j +

∂ 2K
∂ q̇i∂ t

− ∂K
∂qi
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donde vemos que genéricamente las ecuaciones serán de segundo orden. Dado que tenemos

una ecuación para cada una de las coordenadas generalizadas qi, esto resulta en 3N ecuaciones

diferenciales de segundo orden. Las 6N constantes de integración se fijarán entonces en términos

de las condiciones iniciales para qi y q̇i, y determinarán completamente la evolución temporal. De

este modo, los valores iniciales de qi y q̇i reparametrizan nuestro espacio de estados E = R6N .

Ejercicio:

Usando que 2Kn es por definición la primitiva de mn como función de ṙ2
n, y aplicando

la fórmula que relaciona ~̇rn con q̇i que obtuvimos antes, pruebe que el coeficiente de

q̈ j en la última expresión no puede anularse. Esto demuestra que las ecuaciones que

hemos obtenido no pueden ser de orden menor al segundo.

2.2.2 Fuerzas conservativas y monogénicas

Supongamos ahora el caso particular en que la fuerza se deriva de un potencial

~Fn =− ∂V
∂~rn

Donde el potencial depende de la posición y eventualmente del tiempo V (~rn, t). El caso indepen-

diente del tiempo lo conocemos de los cursos previos con el nombre de fuerza conservativa. El

caso dependiente del tiempo es un tipo particular de fuerza no conservativa que se conoce como

fuerza monogénica.

La expresión para la fuerza generalizada se puede reescribir para este tipo de fuerzas, según

Gi = ~Fn ·
∂~rn

∂qi
=− ∂V

∂~rn
· ∂~rn

∂qi
≡− ∂V

∂qi

Es decir que la fuerza generalizada viene dada por menos la derivada del potencial respecto de la

coordenada generalizada correspondiente. Reemplazando esto en las ecuaciones de Lagrange,

escribimos

− ∂V
∂qi

=
d
dt

(
∂K
∂ q̇i

)
− ∂K

∂qi

lo que se puede reordenar como

d
dt

(
∂K
∂ q̇i

)
− ∂ (K −V )

∂qi
= 0

Ahora bien, podemos escribir esta ecuación de una manera más simétrica si observamos que,

dado que V no depende de q̇i, en el primer término podemos reemplazar K por K −V obteniendo

d
dt

(
∂ (K −V ))

∂ q̇i

)
− ∂ (K −V )

∂qi
= 0

En términos de una nueva función L = K −V , tenemos que las ecuaciones de Lagrange quedan

escritas como

d
dt

(
∂L
∂ q̇i

)
− ∂L

∂qi
= 0
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Donde L es lo que se conoce como el lagrangiano del sistema, y es una función de las coordenadas

y velocidades generalizadas, y eventualmente del tiempo L = L(q̇i,qi, t).

La ventaja de esta formulación lagrangiana es que podemos recuperar el conjunto completo de

ecuaciones de movimiento de un sistema mecánico tomando derivadas de una sola función de sus

coordenadas generalizadas, sus velocidades generalizadas, y el tiempo. Esta función se puede

obtener en términos de las energías cinética y potencial del sistema, lo que implica que para

cambiar de coordenadas a partir de la formulación vectorial, sólo tenemos que calcular derivadas

primeras respecto del tiempo.

El precio a pagar por esta simplificación fue el de restringirnos a fuerzas que se puedan derivar

de un potencial. Podemos pensar que esta es una limitación demasiado fuerte, después de todo

quedan excluidas fuerzas tales como el roce, que fue un protagonista importante de los cursos

básicos de física. Sin embargo, por un lado y como veremos en la sección siguiente, existe aún

una categoría mayor de fuerzas que pueden ser incluidas dentro de la formulación lagrangiana.

Por otro, probaremos más adelante bajo consideraciones muy generales que a nivel microscópico

sólo pueden existir fuerzas de este tipo.

2.2.3 Fuerzas dependientes de las velocidades

En nuestra deducción de las ecuaciones de Lagrange, usamos el hecho de que el potencial V

no depende de las velocidades, por lo que no contribuye al término que contiene la derivada

respecto ~̇rn. Sin embargo, una inspección más atenta de ese cálculo nos permite la siguiente

generalización. Supongamos que existe algún tipo de fuerza que se puede obtener a partir de una

función V (~̇rn,~rn, t)según la fórmula

~Fn =
d
dt

(
∂V
∂~̇rn

)
− ∂V

∂~rn

Podemos llamar a V (~̇rn,~rn, t) un potencial dependiente de las velocidades. En el caso particular en

el que V no depende de ~̇rn recuperamos el potencial de una fuerza monogénica, y si además no

depende del tiempo estamos en presencia de una fuerza conservativa. Sin embargo, en el caso

general aún podemos escribir

Gi = ~Fn ·
∂~rn

∂qi
=

d
dt

(
∂V
∂~̇rn

)
· ∂~rn

∂qi
− ∂V

∂~rn
· ∂~rn

∂qi

Integrando por partes en el primer término, y usando las fórmulas que dedujimos más arriba

∂~rn/∂qi = ∂~̇rn/∂ q̇i y ∂~̇rn/∂q j = d(∂~rn/∂qi)/dt, obtenemos

Gi =
d
dt

(
∂V
∂~̇rn

· ∂~̇rn

∂ q̇i

)
− ∂V

∂~̇rn
· ∂~̇rn

∂qi
− ∂V

∂~rn
· ∂~rn

∂qi
=

d
dt

(
∂V
∂ q̇i

)
− ∂V

∂qi

Con lo que podemos reconstruir las ecuaciones de Lagrange

d
dt

(
∂L
∂ q̇i

)
− ∂L

∂qi
= 0

donde de nuevo hemos definido nuestro lagrangiano como L = K −V .
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Cuando hay fuerzas dependientes de las velocidades, la definición que dimos más arriba para el

momento generalizado debe ser reemplazada por

pi =
∂L
∂ q̇i

donde entran también las contribuciones provenientes del potencial.

Si bien la generalización aquí definida puede parecer un tanto exótica a primera vista, en los

hechos resulta muy útil ya que permite incluir en la formulación lagrangiana una de las fuerzas

más importantes de la naturaleza, como se ve en el siguiente ejemplo.

Ejemplo: fuerza de Lorentz

Supongamos como ejemplo sencillo que tenemos una sola partícula, y que la función

V es lineal en las velocidades. De manera completamente general podemos entonces

escribir

V = e

(
Φ− 1

c
~̇r ·~A

)
en términos de una función escalar Φ(~r, t) y una función vectorial ~A(~r, t), donde introduji-

mos las constantes e y c porque serán convenientes más adelante. Si ahora obtenemos

la fuerza usando la fórmula anterior

Fa =
d
dt

(
∂V
∂ ṙa

)
− ∂V

∂ ra

donde los índices a,b recorren las direcciones cartesianas {x,y,z}. Esto nos da

Fa =−e

c

dAa

dt
− e

(
∂Φ

∂ ra
− 1

c
ṙb

∂Ab

∂ ra

)
Usando la regla de la cadena en el primer término nos queda

Fa =−e

c

(
∂Aa

∂ rb
ṙb +

∂Aa

∂ t

)
− e

(
∂Φ

∂ ra
− 1

c
ṙb

∂Ab

∂ ra

)
lo que se puede reacomodar según

Fa = e

(
−∂Φ

∂ ra
− 1

c
∂Aa

∂ t

)
− e

c

(
∂Aa

∂ rb
− ∂Ab

∂ ra

)
ṙb

Si aquí identificamos Φ con el potencial escalar y ~A con el potencial vector, mientras c

será la velocidad de la luz y e la carga eléctrica de nuestra partícula, la expresión que

hemos obtenido no es otra cosa que la fuerza de Lorentz

~F = e
(
~E +~̇r×~B

)
Es decir que la fuerza de Lorentz se puede obtener a partir de un potencial de veloci-

dades, por lo que es un caso particular de las fuerzas dependientes de la velocidad

que hemos estudiado en esta sección.
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Ejercicio

Podemos escribir el lagrangiano de una partícula relativista cargada en la forma

L = K −V =−mrepc
2
√

1−~̇r2/c2 − e

(
Φ− 1

c
~̇r ·~A

)
Se puede comprobar lo poderoso que es el método de Lagrange calculando las ecua-

ciones de movimiento de una partícula cargada en coordenadas polares en el plano,

usando la ley de fuerza vectorial de los cursos básicos de física y comparando con el

cálculo a partir de este lagrangiano.

Nota:

Joseph-Luois Lagrange fue un matemático y físico italiano nacido en Torino bajo

el nombre de Giuseppe Luigi Lagrangia. Considerado por sus contemporáneos «el

matemático más grande de Europa», tenía un carácter extremadamente tímido y

retraído, y había estudiado derecho en la universidad por considerar el tópico de las

matemáticas como demasiado aburrido. Sin embargo, se interesó en la mecánica al

leer un artículo del astrónomo, matemático y geólogo inglés Edmond Halley, quién

fuera también inspirador de Newton.

Lagrange reformuló la mecánica utilizando el análisis matemático, entre otra enorme

cantidad de contribuciones a las matemáticas y la física. Fue también el responsable

de la adopción por la Revolución Francesa del sistema métrico decimal.

2.2.4 Teoremas de conservación

Al final de la Clase 1, reinterpretamos los teoremas de conservación como una consecuencia de

las invarianzas del sistema. La formulación lagrangiana nos permite formalizar y generalizar esa

intuición, como se describe en esta sección.

Según la definición que dimos más arriba, el momento generalizado asociado a la coordenada

generalizada qi se obtiene de la expresión pi = ∂L/∂ q̇i. Esto nos permite escribir las ecuaciones

de Lagrange en la forma

d pi

dt
=

∂L
∂qi

Se puede ver inmediatamente que cada vez que el lagrangiano no dependa de una coordenada ql

el correspondiente momento generalizado pl se conserva. Una tal coordenada que no aparece

explícitamente en el lagrangiano se denomina coordenada cíclica. Es importante puntualizar que

la velocidad generalizada asociada q̇l sí aparece en el lagrangiano.

Ejercicio: conservación del momento lineal

Demuestre el teorema de conservación del momento lineal de la mecánica vectorial

que vimos la Clase 1 utilizando los resultados de esta sección.
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Para hacerlo, primero escriba el lagrangiano de un sistema de partículas en términos

de las coordenadas del centro de masas y las de cada partícula en el sistema centro

de masas. Luego pruebe que si la coordenada centro de masas es cíclica, para lo

que basta que no aparezca en el potencial, entonces el impulso total del sistema se

conserva. Convénzase de que si tal coordenada es cíclica, esto implica que la fuerza

externa total se anula.

Ejercicio: conservación del momento angular

Use los resultados de esta sección para probar el teorema de conservación del momento

angular de la mecánica vectorial que vimos la Clase 1.

Limítese al caso sencillo de una sola partícula en el plano, escribiendo el lagrangiano

en términos de coordenadas polares, y probando que si la coordenada angular es

cíclica entonces el momento angular se conserva. Pruebe que si el ángulo es cíclico,

entonces el torque externo total vale cero.

El hecho de que el lagrangiano sea independiente de la coordenada cíclica ql implica en particular

que nada cambiará si modificamos su valor sumándole una constante arbitraria ql → ql +ε . Es decir

que el problema tiene una invarianza frente a cambios en ql . Una vez más vemos que la existencia

de una invarianza está relacionada con la aparición de una cantidad conservada. Más adelante

generalizaremos este resultado al caso de las invarianzas que no se manifiestan directamente en

una coordenada cíclica.

Vimos en los dos ejemplos previos que cuando hay una coordenada cíclica el momento generali-

zado correspondiente se conserva, algo que pone en un marco general las leyes de conservación

del momento lineal y del momento angular de la mecánica vectorial. Una pregunta pertinente sería

entonces cómo se extiende al contexto del formalismo lagrangiano la ley de conservación de la

energía. Para ver esto, escribamos las ecuaciones de lagrange en coordenadas generalizadas,

según

d
dt

(
∂L
∂ q̇i

)
− ∂L

∂qi
= 0

podemos multiplicar esta ecuación por la velocidad generalizada q̇i y sumar sobre el índice i para

obtener

q̇i
d
dt

(
∂L
∂ q̇i

)
− q̇i

∂L
∂qi

=
d
dt

(
q̇i

∂L
∂ q̇i

)
−
(

q̈i
∂L
∂ q̇i

+ q̇i
∂L
∂qi

)
= 0

donde en la segunda igualdad hemos hecho una integración por partes. Sumando y restando

∂L/∂ t dentro del segundo paréntesis reconocemos la derivada total respecto del tiempo dL/dt.

Nos queda

d
dt

(
q̇i

∂L
∂ q̇i

)
−
(

dL
dt

− ∂L
∂ t

)
= 0
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Esto nos permite reescribir

dE
dt

=−∂L
∂ t

donde hemos definido la energía como una función de las coordenadas y velocidades generalizadas

según la fórmula

E = q̇i
∂L
∂ q̇i

−L = q̇i pi −L

De aquí deducimos que cuando el lagrangiano es independiente del tiempo, la energía se conserva.

Nótese que esto permite extender la definición de la energía a los sistemas monogénicos y a los

que tienen un potencial dependiente de la velocidad. Nuevamente, un teorema de conservación

aparece ligado a una invarianza, en este caso la que corresponde a traslaciones temporales

t → t + ε.

Ejemplo: sistema conservativo no relativista

Para un conjunto de N partículas no relativistas interactuando por medio de un potencial

conservativo, tendremos que

L = K −V =
1
2

Ki j(qi) q̇iq̇ j −V (qi)

De aquí podemos obtener inmediatamente

pi = Ki j(qi) q̇ j

con lo cual la energía toma la forma

E = Ki j(qi) q̇iq̇ j −L =
1
2

Ki j(qi) q̇iq̇ j +V (qi) = K +V

Es decir que en este caso particular funciona la idea de “cambiar el signo al término

potencial” para obtener la energía a partir del lagrangiano y viceversa.

Sin embargo, se puede probar que esto no es verdad en casos más generales, por

ejemplo partículas relativistas o con potenciales dependientes de las velocidades.

Ejemplo: partícula relativista

Para una partícula relativista interactuando con un campo electromagnético, tenemos

L = K −V =−mrepc
2
√

1−~̇r2/c2 − e

(
Φ− 1

c
~̇r ·~A

)
de donde se lee el momento lineal en la forma

~p =
mrep~̇r√

1−~̇r2/c2
+

e

c
~A

Lo que implica

E =
mrepc

2√
1−~̇r2/c2

+ eΦ 6= K +V

Nótese que en este caso, para pasar del lagrangiano a la energía no funciona la fórmula

sencilla de “cambiar el signo al término potencial”.
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2.3 Resumen

En esta clase encontramos una manera de reescribir la segunda ley de Newton en coordenadas

generalizadas, que no requiere calcular derivadas segundas, y que se aplica a sistemas de

partículas relativistas y no relativistas, con fuerzas de tipo lo bastante general como para incluir

las gravitacionales y las electromagnéticas.

Por lo tanto en adelante, al menos para este tipo bastante general de sistemas, podemos reemplazar

la segunda ley de Newton

~Fn =
d pn

dt
donde ~pn = mn~̇rn

para la cual necesitamos saber la masa y las fuerzas que actúan sobre cada una de las N partículas

como función de las posiciones y velocidades de todas las demás, por las ecuaciones de Lagrange

d
dt

(
∂L
∂ q̇i

)
− ∂L

∂qi
= 0

donde ahora es necesario conocer el lagrangiano como función de cada una de las 3N coordenadas

y las 3N velocidades generalizadas.

Si bien aún necesitamos resolver 3N ecuaciones de segundo orden en el tiempo, fuimos capaces

de reparametrizar nuestro espacio de configuración C = R3N en términos de 3N coordenadas

curvilíneas arbitrarias {qi} con i ∈ {1, . . . ,3N}. Como veremos en los capítulos que siguen, una

elección adecuada de tales coordenadas nos permite identificar las coordenadas cíclicas y obtener

los correspondientes teoremas de conservación. Las ecuaciones resultantes son de segundo

orden en el tiempo, por lo que necesitamos especificar 6N condiciones iniciales para las {qi, q̇i}

con i ∈ {1, . . . ,3N}, que parametrizan nuestro espacio de estados E = R6N .
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3. El problema de dos cuerpos I: Definición

3.1 Objetivos

Edmond Halley

En esta clase comenzaremos a aplicar la formulación

lagrangiana que obtuvimos en la Clase 2 a ejemplos

concretos de interés físico.

En particular, nos dedicaremos al problema de dos cuer-

pos que interactúan a través de una fuerza central. Por el

momento, nos concentraremos en obtener resultados sin

especificar la forma explícita de la fuerza central como

función de la distancia entre los dos cuerpos.

Estaremos interesados en obtener la evolución temporal

de la posición de cada uno de los cuerpos. Veremos

que el problema se reduce al de una partícula ficticia

que se mueve en una dimensión bajo la influencia de un

potencial efectivo.

3.2 El problema de dos cuerpos

Supongamos que tenemos dos partículas no relativistas de masa m1 y m2, cuyas posiciones se

describen en un sistema inercial a través de los vectores posición~r1 y~r2. El espacio de configuración

de este sistema es C = R6.
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Para obtener una descripción lagrangiana de este problema, que nos permitirá luego utilizar

coordenadas arbitrarias, podemos comenzar escribiendo su energía cinética como

K =
1
2

m1~̇r2
1 +

1
2

m1~̇r2
2

Supongamos además que las dos partículas interactúan a través de un potencial que no depende

de las velocidades ni del tiempo

V =V (~r1,~r2)

El lagrangiano correspondiente puede entonces escribirse en la forma

L = K −V =
1
2

m1~̇r2
1 +

1
2

m1~̇r2
2 −V (~r1,~r2)

Al tomar la derivadas del potencial, obtendremos las fuerzas entre ambas partículas, según

~F1 = ~F1→2 +~Fext
1 =− ∂V

∂~r1

~F2 = ~F2→1 +~Fext
2 =− ∂V

∂~r2

Si las partículas están alejadas lo suficiente de cualquier otro cuerpo en el universo, entonces no

hay fuerzas externas. Por lo tanto tendremos que

~F1→2 =− ∂V
∂~r1

~F2→1 =− ∂V
∂~r2

Estas fuerzas deben satisfacer la ley de acción y reacción ~F1→2 = −~F2→1, lo que en particular

implica para el potencial

∂V
∂~r1

=− ∂V
∂~r2

Definiendo dos nuevas variables, la coordenada relativa~r y la posición del centro de masas~rcm

según las fórmulas

~r =~r1 −~r2

~rcm =
m1~r1 +m2~r2

m1 +m2

podemos reemplazar este cambio de variables en la expresión de más arriba para las derivadas

del potencial y usar la regla de la cadena. Con esto tenemos

∂V
∂~r

+
m1

m1 +m2

∂V
∂~rcm

=
∂V
∂~r

− m2

m1 +m2

∂V
∂~rcm

Procedemos a cancelar las derivadas respecto de~r y a reordenar los términos restantes, para

obtener

∂V
∂~rcm

= 0
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Esto implica que el potencial es función solamente de la coordenada relativa~r =~r1 −~r2.

Además, estamos interesados en el problema en el que la fuerza es central, es decir que cumple

la condición

(~r2 −~r1)×~F2→1 = 0

lo que se puede expresar en términos de la coordenada relativa~r

~r× ∂V
∂~r

= 0

Esta ecuación implica que ∂V/∂~r debe ser proporcional al versor ř, lo que solo se puede cumplir si

escribimos ∂V/∂~r =V ′(r)ř donde V ′(r) es una función arbitraria de r = |~r|. Esto se puede integrar,

para obtener finalmente

V =V (|~r2 −~r1|)

Con lo cual el lagrangiano del problema vendrá dado por la expresión

L =
1
2

m1~̇r2
1 +

1
2

m1~̇r2
2 −V (|~r1 −~r2|)

Ejercicio:

Calcule las ecuaciones de Lagrange para este potencial ¿cuántas ecuaciones diferen-

ciales hay? ¿cuántas variables? ¿están acopladas?

Si invertimos la definición de~r y~rcm para obtener~r1 y~r2

~r1 =~rcm+
m2~r

m1 +m2

~r2 =~rcm− m1~r
m1 +m2

Las velocidades se obtienen inmediatamente y se pueden reemplazar en la energía cinética, para

obtener el lagrangiano en las nuevas coordenadas

L =
1
2

m1

(
~̇rcm+

m2~̇r
m1 +m2

)2

+
1
2

m1

(
~̇rcm− m1~̇r

m1 +m2

)2

−V (|~r|)

Expandiendo los cuadrados vemos que los términos proporcionales a ˙~ cmr ·~̇r se cancelan, obteniendo

L =
1
2

mtot~̇r2
cm+

1
2

µ~̇r2 −V (r)

Donde mtot = m1 +m2 es la masa total, y la combinación µ = m1m2/(m1 +m2) se conoce como la

masa reducida del sistema.

Ejercicio:

Escriba las ecuaciones de Lagrange para las coordenadas relativa~r y centro de masas

~rcm ¿cuántas son? ¿están acopladas?

Con este cambio de variables, hemos reparametrizado nuestro espacio de configuración C = R6

en términos de las coordenadas {~rcm,~r}.
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3.2.1 Problema equivalente de una partícula

La primera observación importante es que las tres componentes del vector posición del centro de

masas~rcm son coordenadas cíclicas, es decir que no aparecen en el lagrangiano. Esto implica

que su correspondiente momento generalizado

~pcm =
∂L

∂~̇rcm
= mtot~̇rcm

se conserva. Esto es algo que ya sabíamos: en ausencia de fuerzas externas el momento lineal

del centro de masas se conserva, pero ahora escrito en un nuevo lenguaje. Las ecuaciones de

movimiento para~rcm son entonces

mtot~̇rcm = ~pcm

y se pueden resolver fácilmente como

~rcm =
~pcm
mtot

(t − t0)+~r0
cm

donde~r0
cm es el valor de~rcm al tiempo t = t0.

En cuanto a las ecuaciones de Lagrange para~r, estas toman la forma

d
dt

(
∂L
∂~̇r

)
− ∂L

∂~r
= µ~̈r+V ′(r)ř = 0

donde ř es el versor radial. En estas ecuaciones no entra ni la variable cíclica~rcm ni su derivada

temporal ~̇rcm, por lo que es evidente que se podrían haber obtenido del lagrangiano truncado

L1part =
1
2

µ~̇r2 −V (r)

En otras palabras, hemos transformado el problema de dos cuerpos en el problema equivalente

de una sola partícula ficticia de masa µ situada a una distancia~r del origen, con un potencial que

depende sólo de r = |~r|.

Un punto importante de esta truncación es que el espacio de configuración resultante C = R3

tiene dimensión menor que el original, y lo mismo sucede para el espacio de estados E =R6. Otra

cuestión a mencionar es que es consistente, en el sentido de que las ecuaciones de movimiento

para ~r que se obtienen a partir del lagrangiano truncado coinciden con las que se obtendrían

usando lagrangiano original.

La dependencia sencilla del potencial nos hace sospechar que el problema será particularmente

simple si lo escribimos en coordenadas esféricas. Para esto, definimos

x = r cosθ sinφ y = r sinθ sinφ z = r cosφ

y derivamos respecto del tiempo usando la regla de la cadena, para obtener las velocidades en la

forma

ẋ = ṙ cosθ sinφ − rθ̇ sinθ sinφ + rφ̇ cosθ cosφ
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ẏ = ṙ sinθ sinφ + rθ̇ cosθ sinφ + rφ̇ sinθ cosφ

ż = ṙ cosφ − rφ̇ sinφ

Si reemplazamos estas expresiones en el lagrangiano, obtenemos después de un poco de trabajo

L1part =
1
2

µ
(
ṙ2 + r2 (

φ̇
2 + θ̇

2 sin2
φ
))

−V (r)

donde, al igual que en el ejemplo de las coordenadas polares en el plano que vimos la Clase 2,

los productos mixtos se cancelaron. A partir de este lagrangiano, podemos obtener fácilmente las

ecuaciones de Lagrange, aplicando la formula general de la clase previa

d
dt

(
∂L1part

∂ ṙ

)
− ∂L1part

∂ r
= µ r̈−µr

(
φ̇

2 + θ̇
2 sin2

φ
)
+V ′(r) = 0

d
dt

(
∂L1part

∂ θ̇

)
− ∂L1part

∂θ
=

d
dt

(
µr2

θ̇ sin2
φ
)
= 0

d
dt

(
∂L1part

∂ φ̇

)
− ∂L1part

∂φ
=

d
dt

(
µr2

φ̇
)
−µr2

θ̇
2 sinφ cosφ = 0

Ejercicio:

Escriba el lagrangiano en coordenadas esféricas para el problema de Hooke, es decir

dos partículas unidas por un resorte. Obtenga las ecuaciones de movimiento.

Este problema provee una descripción clásica para el movimiento de una molécula

diatómica. Sin embargo, su importancia fenomenológica es limitada, ya que a la escala

molecular los efectos cuánticos comienzan a ser relevantes.

Ejercicio:

Repita lo anterior para el problema de Kepler, es decir dos partículas interactuando a

través del potencial newtoniano.

Este problema describe el movimiento de los planetas en el sistema solar, y es el que

motivó a Newton a desarrollar sus tres leyes de la mecánica y la ley de la gravitación

universal.

Fijando primero la atención en la última ecuación, vemos que tiene una solución trivial dada por

φ = π/2. En esta solución, la partícula se mueve en el plano (x,y). Las dos ecuaciones restantes

pueden escribirse como

µ r̈−µrθ̇
2 +V ′(r) = 0

d
dt

(
µr2

θ̇
)
= 0

Estas ecuaciones pueden obtenerse a partir del lagrangiano

L2d =
1
2

µ
(
ṙ2 + r2

θ̇
2)−V (r)

Se trata de nuevo de un lagrangiano truncado, ya que hemos omitido la variable φ , reduciendo

una dimensión adicional en el espacio de configuración C = R2.
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Ejemplo: el movimiento tiene lugar en un plano

La resolución anterior puede hacerse por un camino más corto. Notemos que, dado

que la fuerza es central, es decir que apunta hacia el origen de coordenadas en la

variable~r, entonces no habrá torque actuando sobre la partícula ficticia. Esto resulta

en que el momento angular asociado ~̀= m~r×~̇r es constante.

Lo anterior implica que podemos elegir un sistema de coordenadas tal que el eje z

apunte en la dirección del momento angular. Ahora bien, por definición el vector ~r

es siempre perpendicular a ~̀, por lo que se mantendrá en el plano (x,y). Con esto,

podemos simplificar el cambio de variables, usando coordenadas polares en este plano

en lugar de coordenadas esféricas en el espacio. Es decir, escribimos

x = r cosθ y = r sinθ z = 0

Este problema corresponde al de una partícula que se mueve en un plano que dimos

como ejemplo la Clase 2, lo que simplifica la obtención del lagrangiano

L2d =
1
2

µ
(
ṙ2 + r2

θ̇
2)−V (r)

que coincide con el resultado de más arriba para el lagrangiano truncado.

Lo primero que notamos en estas ecuaciones es que, dado que la coordenada θ es cíclica, el

momento generalizado asociado pθ = ∂L2d/∂ θ̇ se conserva. Llamamos ` a esta constante, y

tenemos

`= µr2
θ̇

Con esto hemos encontrado una primera integral del problema. Esto quiere decir que hemos

logrado reducir en uno el orden en derivadas de las ecuaciones involucradas. Despejando entonces

θ̇ de esta expresión, según

θ̇ =
`

µr2

obtenemos la ecuación que debemos resolver para obtener la evolución del ángulo θ como función

del tiempo. Podemos insertar estos resultados en la ecuación restante para r, lo que resulta en

µ r̈− `2

µr3 +V ′(r) = 0

que es la ecuación que deberíamos resolver para obtener la evolución del radio r como función

del tiempo.

Ejercicio:

La tercera ecuación de Lagrange para L1part tiene otra solución trivial, dada por φ = 0.

Obtenga la ecuación para r en este caso ¿Qué sucede con la ecuación para θ? ¿Qué

representa este movimiento?
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dθ

dl

dA

r

Figura 3.2.1: Ilustración de la segunda ley de Kepler. El área dA formada por el radio r y el diferencial de

arco dl se recorre a velocidad uniforme.

3.2.2 Solución angular

Volviendo a la ecuación que obtuvimos más arriba para el movimiento angular

θ̇ =
`

µr2

vemos que se puede integrar para obtener una solución completa para el ángulo θ como función

del tiempo t, según

θ = θ0 +
`

µ

∫ t

t0

dt
r2

Por supuesto que para poder hacer explícitamente esta integral, necesitamos conocer la forma de

r como función de t. Como veremos en la sección siguiente, dependiendo de la forma del potencial

V (r) esta expresión puede o no obtenerse analíticamente.

Podemos reescribir la evolución angular como una relación entre diferenciales

dθ =
`

µr2 dt

por lo tanto el diferencial de arco dl = r dθ descripto por la partícula ficticia en su movimiento

durante un tiempo infinitesimal dt vendrá dado por la expresión

dl =
`

µr
dt

Si desde cada uno de los extremos de este diferencial de arco trazamos una línea hasta el origen,

obtenemos un triángulo infinitesimal, que fue barrido por el radio vector~r durante su evolución

durante el tiempo dt, como se puede ver en la figura 3.2.1. El área de este triángulo será dA= r dl/2,

es decir que

dA =
`

2µ
dt

Podemos integrar esto entre dos valores de t para obtener

A−A0 =
`

2µ
(t − t0)
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Con lo que hemos demostrado la segunda ley de Kepler: el radio vector~r barre áreas iguales en

tiempos iguales.

3.2.3 Solución radial

La ecuación que tenemos que resolver para el radio es la que habíamos obtenido más arriba, la

cual se puede reordenar como

µ r̈ =−V ′(r)+
`2

µr3 =− d
dr

(
V (r)+

`2

2µr2

)
︸ ︷︷ ︸

V1d

o en otras palabras

µ r̈ =−V ′
1d(r)

donde vemos que hemos transformado el problema en un problema unidimensional equivalente,

que contiene una partícula que se mueve en una dimensión bajo la influencia de un potencial

efectivo de la forma

V1d =V +
`2

2µr2

En esta expresión, el primer término es el potencial del problema, mientras que el segundo se

conoce como barrera centrífuga, ya que crece sin límite cuando nos acercamos al origen. Se puede

ver fácilmente que la ecuación de movimiento de arriba puede obtenerse a partir del lagrangiano

efectivo

L1d =
1
2

µ ṙ2 −V1d

Es evidente que hemos reducido aún más el espacio de configuración, realizando una nueva

truncación que nos deja con un problema unidimensional cuyo espacio de configuración es C = R.

Este problema unidimensional equivalente tiene una energía conservada, lo que se puede probar

multiplicando la ecuación de movimiento por ṙ e integrando. Esta energía toma la forma

E =
1
2

µ ṙ2 +V1d(r)

Naturalmente tenemos que E ≥V1d, por lo que el movimiento tendrá lugar en la región de valores

de r donde se cumple esta desigualdad. A medida que el radio se acerca a algún borde de dicha

región, el valor del potencial efectivo V1d es cada vez más parecido al de la energía E, por lo que el

término µ ṙ2/2 es cada vez más pequeño. Cuando el radio alcanza el borde tenemos que E =V1d,

por lo que µ ṙ2/2 = 0 y el movimiento radial se detiene. Dado que la fuerza radial efectiva −V ′
1d es

no nula, esta situación dura solo un instante y luego el radio comienza a cambiar nuevamente,

pero ahora se mueve en la dirección opuesta alejándose del borde. Por esta razón, cualquier

punto donde se cumpla V1d = E se denomina punto de retorno del potencial, el movimiento radial

tendrá lugar rebotando entre los puntos de retorno.
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Acotada

Circular

r2r1 rcirc

Ea

Ec Potencial real

Potencial centrífugo

Potencial efectivo

Figura 3.2.2: Potencial efectivo para el problema de Hooke. Cuando la energía del sistema es Ec el sistema

recorre órbitas circulares con radio rcirc. Cuando la energía es Ea > Ec las órbitas son acotadas.

No hay órbitas no acotadas en este sistema. En ningún caso la partícula pasa por el origen.

Ejercicio:

Usando algún software de dibujo como por ejemplo Mathematica o GeoGebra, obtenga

gráficas del potencial efectivo para el caso del potencial de Lennard-Jones que está

dado por

V (r) = k
(( rnulo

r

)12
−
( rnulo

r

)6
)

Este potencial describe la interacción entre moléculas neutras como una competencia

entre un término repulsivo de corto alcance y uno atractivo de alcance mayor.

De aquí se pueden sacar varias conclusiones cualitativas muy útiles sobre el movimiento, solamente

analizando la forma del potencial efectivo

Si el potencial efectivo crece hacia radios grandes, volviéndose mayor que la energía,

entonces habrá un punto de retorno y el movimiento será acotado. La partícula ficticia se

mantendrá cerca del origen. Si en cambio el potencial está acotado a radios grandes, y si

la energía es mayor que la cota del potencial, entonces no habrá un punto de retorno y la

órbita será no acotada. La partícula ficticia podrá alejarse arbitrariamente del origen.

Las mismas consideraciones se aplican cuando nos movemos hacia radios pequeños:

dependiendo de la forma del potencial efectivo y de la energía total, el sistema unidimensional

puede tener o no puntos de retorno. Si no hay puntos de retorno, el movimiento llega a r = 0.

Si en cambio sí los hay, el movimiento radial se detiene en el punto de retorno y cambia de

dirección.
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No acotada

Acotada

Circular

r2r1 rcirc

Ea

En

Ec

Potencial real

Potencial centrífugo

Potencial efectivo

Figura 3.2.3: Potencial efectivo para el problema de Kepler. Cuando la energía del sistema es Ec el sistema

recorre órbitas circulares con radio rcirc. Cuando la energía es 0 > Ea > Ec las órbitas son

acotadas. Para energías En > 0 las órbitas son no acotadasz. En ningún caso la partícula pasa

por el origen.

Si el potencial efectivo tiene un mínimo en r = rcirc, cualquier movimiento debe tener una

energía mayor o igual que el valor mínimo del potencial V (rcirc). En particular, si la energía

es igual al valor mínimo del potencial E =V (rcirc), entonces el sistema unidimensional solo

puede quedarse quieto en el punto mínimo r = rcirc, ya que no le alcanzaría la energía para

ir hacia radios mayores o menores.

En términos del problema inicial, esto no implica no haya movimiento, ya que θ̇ es diferente

de cero. Lo que está sucediendo es que el radio se mantiene constante en rcirc, por lo que la

partícula ficticia realiza una órbita circular alrededor del origen de coordenadas.

Ejercicio:

Obtenga gráficas del potencial efectivo para el caso del problema de Kepler y del

problema de Hooke, usando algún software de dibujo como por ejemplo Mathematica

o GeoGebra, y analice las correspondientes órbitas.

La energía del problema unidimensional equivalente que hemos encontrado más arriba se puede

escribir en términos del potenical real en la forma

E =
1
2

µ ṙ2 +
`2

2µr2 +V (r)

de donde se puede despejar la velocidad radial según

ṙ =

√
2
µ

(
E − `2

2µr2 −V (r)
)
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Usando esta expresión y escribiendo ṙ = dr/dt podemos despejar

dt =
dr√

2
µ

(
E − `2

2µr2 −V (r)
)

Esto permite reducir el problema a cuadraturas de acuerdo a

t = t0 +
∫ r

r0

dr√
2
µ

(
E − `2

2µr2 −V (r)
)

Junto con la ecuación que escribimos más arriba para θ , esto constituye una solución completa

del problema de dos cuerpos con fuerza central.

La primera observación es que hemos obtenido una expresión integral la cual, dependiendo de

la forma el potencial, puede no ser posible de integrar explícitamente en términos de funciones

elementales. Sin embargo, esta se considera una solución del problema, ya que utilizando métodos

numéricos se puede calcular la posición como función del tiempo con precisión arbitraria. Como

segundo punto, incluso si pudiéramos resolver explícitamente la integral, obtendríamos t como

función de r en lugar de lo opuesto. Esto nos lleva a la necesidad de utilizar una función inversa

para obtener r como función de t.

Ejercicio:

Use un software de manipulación algebraica como Mathematica o Maple, o una tabla

de integrales para investigar las soluciones radiales del potencial tipo ley de potencias

V = −kr−n+1 ¿Para cuáles valores de n hay una solución explícita en términos de

funciones elementales o especiales?

3.3 Resumen

Analizando el problema de dos cuerpos con fuerza central, vimos que se puede transformar en un

problema de una sola partícula ficticia que se mueve a en un potencial central. Aplicando entonces

la formulación lagrangiana en coordenadas esféricas, fuimos capaces de probar que el movimiento

resultante tendrá lugar en un plano.

Usando la conservación del momento angular, pudimos resolver el movimiento angular, y reescribir

el movimiento radial como el de un problema unidimensional equivalente con un potencial efectivo.

Pudimos reducir este último problema a cuadraturas, escribiendo la dependencia temporal del

radio en términos de una sola integral.

Además, demostramos que se cumple la segunda ley de Kepler, que dice que el radio vector que

une un planeta al sol barre áreas iguales en tiempos iguales. Lo interesante es que esta propiedad

se cumple incluso cuando la interacción central no responde a la ley de cuadrado inverso que

caracteriza a la interacción gravitatoria.





4. El problema de dos cuerpos II: Órbitas

4.1 Objetivos

Joseph Louis François Bertrand

En esta clase nos concentraremos en las órbitas del

problema de dos cuerpos con fuerza central.

En nuestro análisis, sólo estaremos interesados en des-

cribir cómo cambia el radio como función del ángulo a

medida que se produce el movimiento, sin ocuparnos de

la dependencia temporal de ninguna de ambas variables.

Construiremos las ecuaciones diferenciales que satisfa-

cen las órbitas para un potencial general, y estudiaremos

las propiedades universales de sus soluciones.

Además, aplicando la técnica de perturbaciones, anali-

zaremos qué condiciones debe cumplir el potencial para

que el sistema recorra órbitas cerradas.

4.2 Órbitas del problema de dos cuerpos

Recordemos las primeras integrales que habíamos obtenido en la Clase 3 para las velocidades

angular y radial del problema de dos cuerpos
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θ̇ =
`

µ r2

ṙ =

√
2
µ

(
E − `2

2µr2 −V (r)
)

Con una integral adicional, estas ecuaciones resultaban en una reducción a cuadraturas del

problema, lo que es equivalente a una solución completa.

Sin embargo, cuando el movimiento en el tiempo no resulta relevante, podemos dejar de lado estas

ecuaciones y concentrarnos en escribir una ecuación que describa exclusivamente las órbitas del

sistema, es decir el comportamiento de r como función de θ .

Para eliminar la variable t de nuestras ecuaciones de movimiento, dividimos la velocidad radial en

la velocidad angular, obteniendo la expresión

dr
dθ

=
ṙ
θ̇
= r2

√
2µ

`2

(
E − `2

2µr2 −V (r)
)

Esto permite obtener inmediatamente una solución para la órbita de acuerdo a la integral

θ = θ0 +
∫ r

r0

dr

r2

√
2µ

`2

(
E − `2

2µr2 −V (r)
)

Nuevamente, esto se puede considerar una solución completa de la órbita del problema, si bien

dependiendo de la forma del potencial la integral podría no tener una forma explícita en términos

de funciones elementales.

Ejercicio:

Use un software de manipulación algebraica como Mathematica o Maple, o una tabla

de integrales para investigar las soluciones para las órbitas del potencial tipo ley de

potenciasV =−kr−n+1 ¿Para cuáles valores de n hay una solución explícita en términos

de funciones elementales o especiales?

Podemos analizar algunas propiedades de la órbita incluso sin obtener una forma explícita para la

integral. En efecto, reordenando la ecuación de arriba podemos reescribirla en la forma

1
r4

(
dr
dθ

)2

=
2µ

`2

(
E − `2

2µr2 −V (r)
)

Esta ecuación tiene dos simetrías inmediatamente identificables:

Si r(θ) es una solución, también lo es r(θ + ε) con ε un número real arbitrario. Esto no es

sino la invarianza rotacional, que nos dice que podemos rotar el sistema de coordenadas

alrededor del origen en el plano del movimiento sin que tenga ninguna consecuencia física.

Si r(θ) es una solución, también lo es r(−θ). Esto sucede porque la derivada aparece

al cuadrado, y significa que podemos cambiar el signo del eje z de nuestro sistema de

coordenadas sin que haya efectos físicos.
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Solución numérica

Primera reflexión

Segunda reflexión
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Figura 4.2.1: Las órbitas se reflejan el los ápsides: podemos usar esta propiedad para construir la órbita

completa a partir del arco entre dos ápsides. Esto es muy útil al obtener soluciones numéricas,

ya que reduce el número de puntos a computar.

Una combinación de ambas transformaciones implica que si r(θ) es solución, también lo es

su forma reflejada r(2θaps−θ) con θaps una constante cualquiera. Podemos preguntarnos qué

valor debería tomar esta constante para que la órbita se refleje sobre sí misma, es decir para que

r(θ) = r(2θaps−θ). Derivando esta condición y evaluando en θ = θaps obtenemos r′(θaps) =−r′(θaps),

lo que implica que r′(θaps) = 0. Es decir que θaps debe ser el ápside de la órbita, definido como

el punto donde la distancia al origen es máxima o mínima. La conclusión es que las órbitas se

reflejan en sus ápsides.

La propiedad de reflexión en el ápside resulta muy útil cuando resolvemos las ecuaciones numé-

ricamente, ya que nos permite encontrar la solución para los valores de θ que estén entre dos

ápsides cualesquiera, y luego construir el resto aplicando reflexiones.

La ecuación de más arriba puede resultar más simple de resolver si en lugar de escribirla en

términos de la variable r la escribimos en términos de una nueva variable u = 1/r(
du
dθ

)2

=
2µ

`2

(
E − `2

2µ
u2 −V

)

Es posible también escribir una ecuación de segundo orden para la órbita, que a veces simplifica

la solución de algunos problemas. Para esto, usamos la ecuación para θ̇ para escribir

d
dt

=
`

µr2
d

dθ

y lo reemplazamos en la ecuación para r, obteniendo

`2

µr2
d

dθ

(
1
r2

dr
dθ

)
− `2

µr3 +V ′(r) = 0
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Escribiendo esto en términos de u y reordenando, nos queda

d2u
dθ 2 +u+

µ

`2 ∂uV = 0

Esta ecuación de segundo orden resulta particularmente útil para estudiar qué sucede cuando

deformamos ligeramente una órbita circular, como haremos en la siguiente sección.

Nota:

Como hemos visto, las órbitas y el movimiento en el tiempo para el problema de dos

cuerpos con fuerza central se pueden reducir a cuadraturas, lo que es el equivalente a

resolverlos exactamente.

El problema de tres cuerpos en cambio es extremadamente difícil de resolver, tanto que

se conocen muy pocas soluciones exactas para casos muy particulares, algunas de las

cuales fueron obtenidas hace menos de diez años. En el caso general el movimiento es

fuertemente caótico, lo que significa que cualquier perturbación se amplifica modificando

completamente la órbita resultante.

En la novela El problema de tres cuerpos el escritor Liu Cixin imagina una civilización

que ha evolucionado en el sistema solar de nuestra estrella más cercana Próxima

Centauri, que es un sistema triple. Esta especie enfrenta climas extremos cada vez

que su planeta se acerca mucho o se aleja demasiado de alguna de las estrellas del

sistema, y no conoce una manera de predecir lo que sucederá. Su única certeza es

que, en algún momento de su órbita futura, su planeta será finalmente engullido por

alguno de los tres soles. De este modo, el único plan posible para la supervivencia es

emigrar.

4.2.1 Teorema de Bertrand

Una órbita sencilla que se encuentra como solución para varios potenciales es la órbita circular,

que en términos de la variable u está definida como u(θ) = ucirc. Podemos encontrar el valor de

ucirc usando la ecuación de segundo orden de más arriba, donde al reemplazar la solución se

encuentra

ucirc =− µ

`2 ∂uV |ucirc

Nos gustaría escribir la ecuación que satisface una pequeña perturbación de esta órbita circular,

definida según u(θ) = ucirc+ ε δu(θ), donde ε es un número pequeño y δu(θ) es una función a

determinar. Reemplazando en la ecuación de segundo orden para la órbita y desarrollando a

primer orden en ε, tenemos

d2δu
dθ 2 +

(
1+

µ

`2 ∂
2
u V |ucirc

)
︸ ︷︷ ︸

α2

δu = 0
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rcirc

rcirc + ε δr

Figura 4.2.2: Teorema de Bertrand: las pequeñas perturbaciones de una órbita circular (izquierda) resultan

en una órbita perturbada que se cierra sobre sí misma sólo cuando el radio realiza un número

entero de oscilaciones mientras el ángulo da un número entero de vueltas (derecha).

Con la definición de α2 que hemos hecho en la fórmula, esto puede reescribirse en la forma más

compacta

d2δu
dθ 2 +α

2
δu = 0

que podemos reconocer inmediatamente como la ecuación de un oscilador armónico, cuya solución

conocemos

δu(θ) = δu0 cos(α(θ −θ0))

siendo δu0 y θ0 constantes de integración. Esta perturbación oscila a medida que θ crece reco-

rriendo la órbita. Por lo tanto la órbita perturbada será cerrada si cuando se dieron n vueltas en

torno al origen, es decir cuando θ avanzó un ángulo 2πn, la perturbación δu realizó un número m

de oscilaciones completas. Para esto necesitamos que α2πn = 2πm. Esto implica que la órbita

será cerrada sólo si α es un número racional α = m/n. Si recordamos la expresión para α vemos

que esto impone una condición sobre la forma del potencial.

Si ahora queremos resolver el problema a orden cuadrático en la perturbación, escribimos u =

ucirc+ εδu+ ε2δ(2)u y volvemos a reemplazar en la ecuación completa, desarrollándola ahora a

segundo orden en ε. Nos queda

d2δ(2)u
dθ 2 +α

2
δ(2)u =− µ

2`2 ∂
3
u V |ucirc︸ ︷︷ ︸

2β

δu2

Insertando explícitamente la solución para δu que habíamos obtenido del desarrollo a primer orden,

tenemos

d2δ(2)u
dθ 2 +α

2
δ(2)u = β δu2

0 (1+ cos(2α(θ −θ0)))

donde en el segundo término expresamos el cuadrado del coseno según la fórmula 2cos2(· · ·) =

1+cos(2 · · ·). Esta ecuación corresponde a un oscilador armónico forzado, que según sabemos se
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resuelve con

δ(2)u =
β

α2 δu2
0

(
1− 1

3
cos(2α(θ −θ0))

)
Repitiendo el análisis anterior, vemos nuevamente que esta corrección resulta en órbitas cerradas

si α es un número racional.

Para ir a tercer orden, escribimos u = ucirc+ εδu+ ε2δ(2)u+ ε3δ(3)u y volvemos a reemplazar en la

ecuación, obteniendo esta vez

d2δ(3)u
dθ 2 +α

2
δ(3)u = 4β δuδ(2)u − µ

6`2 ∂
4
u V |ucirc︸ ︷︷ ︸

4γ

δu3

Insertando las formas explícitas de δu y δ(2)u en el lado derecho, y usando algunas identidades

trigonométricas, llegamos a la expresión

d2δ(3)u
dθ 2 +α

2
δ(3)u = δu3

0

((
10β 2

3α2 +3γ

)
cos(α(θ −θ0))+

(
γ − 2β 2

3α2

)
cos(3α(θ −θ0))

)
Esto es nuevamente un oscilador forzado, esta vez con dos fuerzas externas. Una de tales fuerzas

oscila con la frecuencia natural del oscilador armónico α. Por lo tanto, esta fuerza dará lugar al

fenómeno de resonancia, haciendo que δ(3)u crezca sin límites a medida que crece θ , es decir a

medida que la partícula ficticia realiza sus revoluciones en torno al origen.

Hemos encontrado una inestabilidad: tenemos una solución para el movimiento del sistema (la

órbita circular) cuyas pequeñas perturbaciones crecen arbitrariamente, con lo que dejan de ser

pequeñas y destruyen la solución. Para evitar esto necesitamos que la fuerza resonante esté

ausente, lo que sucede solamente cuando se cumple la condición

10β
2 +9α

2
γ = 0

En este caso, solo queda una fuerza externa que no es resonante, y la solución para el oscilador

forzado es

δ(3)u = δ(3)u0 cos(α(θ −θ0))−
δu3

0
8α2

(
γ − 2β 2

3α2

)
cos(3α(θ −θ0))

donde δ(3)u0 es una nueva constante de integración. Esta solución de nuevo da origen a una órbita

cerrada cuando α es un número racional.

Este proceso perturbativo se puede continuar a un orden arbitrario en el parámetro infinitesimal

ε, lo que nos permite construir una órbita arbitrariamente deformada. Sin embargo, la expansión

hasta orden tres es suficiente para nuestros fines, como veremos a continuación.

Ejemplo: ley de potencias

Podemos testear estos cálculos en el caso de un potencial con la forma de una ley de

potencias

V =−kr−n+1
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Primero tenemos que encontrar ucirc, mediante la fórmula

1 =
µ

`2 k(n−1)un−3
circ

luego calculamos α, β y γ, obteniendo

α
2 = 3−n

β =
1
4
(n−2)(n−3)u−1

circ

γ =
1

24
(n−2)(n−3)(n−4)u−2

circ

Reemplazando en la condición de ausencia de resonancia, esto implica que

(n−3)2(n−2)(n+1) = 0

Con lo cual vemos que o bien n = −1 y obtenemos la ley de Hooke, o bien n = 2 y

obtenemos la ley de Newton. No podemos poner n = 3 porque en ese caso α valdría

cero y la perturbación de primer orden crecería linealmente.

La condición 10β 2 +9α2γ = 0 se puede escribir completamente en términos del potencial y sus

derivadas, como

5u(∂ 3
u V )2 +3

(
∂uV −u∂

2
u V
)

∂
4
u V = 0

donde hemos reemplazado las expresiones explícitas para α2, β y γ , y hemos eliminado µ/`2 en

términos de ucirc usando la fórmula que determina la órbita circular. Finalmente reemplazamos

ucirc en todas partes por u, ya que eligiendo el valor de `2 podemos hacer que la expresión sea

válida en cualquier posición. Con esto hemos obtenido una ecuación diferencial para la fuerza

generalizada Gu =−∂uV , que se puede escribir como.

5u(∂ 2
u Gu)

2 −3(Gu +u∂uGu)∂
3
u Gu = 0

Si pudiéramos resolver esta ecuación, obtendríamos aquéllos potenciales para los cuales una

pequeña perturbación de la órbita circular resulta en una solución estable que da lugar a una órbita

cerrada.

Ejercicio:

Utilizando un software de manipulación algebraica como Mathematica o Maple, rees-

criba la ecuación diferencial en términos de una nueva variable independiente ζ = logu

y una nueva variable dependiente U = log(−Gu). Proponga un desarrollo en serie de

la solución, con la forma

U = ∑
m

amζ
m

y reemplácelo en la ecuación para demostrar que todos los coeficientes am deben

anularse con la excepción de a0 y a1, el cual puede valer −3, 0 ó 1. Yendo hacia atrás
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con el cambio de variables, demuestre que el caso a1 =−3 corresponde a la ley de

Hooke V = kr2, mientras que el caso a1 = 0 corresponde a la ley de Kepler V =−k/r. El

caso a1 = 1 debe descartarse ya que conduce a α = 0 (ver el ejemplo de más arriba).

Con esto probamos que estas dos leyes de potencias constituyen la solución general al problema, es

decir que son los únicos potenciales que dan lugar a órbitas circulares que cuando son perturbadas

siguen siendo cerradas. Este resultado se conoce como teorema de Bertrand.

4.3 Resumen

Aprendimos que la órbita del problema de dos cuerpos con fuerza central se puede escribir como

una cuadratura, sin necesidad de resolver el movimiento como función del tiempo.

También fuimos capaces de escribir una ecuación diferencial de segundo orden para la órbita, y la

usamos para estudiar el comportamiento de las perturbaciones alrededor de la órbita circular. Este

tipo de cálculos se conocen como teoría clásica de perturbaciones y resulta muy útil en cuestiones

relacionadas con la mecánica celeste.

A partir de este análisis probamos el teorema de Bertrand, que dice que los únicos potenciales

cuyas perturbaciones alrededor de la órbita circular resultan en trayectorias cerradas corresponden

al potencial de Kepler y al potencial de Hooke.



5. El problema de dos cuerpos III: Kepler

5.1 Objetivos

Johannes Kepler

En esta clase nos proponemos estudiar el caso especial

del problema de dos cuerpos que interactúan mediante

una fuerza central de carácter gravitatorio.

Este problema está en la base de la mecánica celeste, ya

que constituye una primera aproximación al movimiento

de los planetas en torno al sol, y al de los satélites en torno

a cada planeta. Esto significa que entre los resultados

de nuestro análisis debemos encontrar las dos leyes de

Kepler que aún no hemos demostrado.

Fue la solución de este problema particular lo que llevó

a Newton a formular las leyes del movimiento en su céle-

bre Philosophiæ naturalis principia mathematica, dando

origen a la Mecánica.

5.2 El problema de Kepler

El problema de Kepler corresponde al de dos cuerpos interactuando con una fuerza central, cuando

el potencial toma la forma de la interacción newtoniana

V (r) =−k
r
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En esta expresión, la constante de interacción k está determinada como k = Gm̃1m̃2 donde G

es la constante de Newton de la gravitación universal, mientras que m̃1 y m̃2 son las masas

gravitacionales de los cuerpos en cuestión. Nótese que en este punto no estamos asumiendo que

estas masas coinciden con las masas inerciales m1 y m2 que entran en la ley de fuerzas.

5.2.1 Órbitas del problema de Kepler

Vamos a comenzar estudiando la forma de las órbitas. Lo primero que podemos hacer para tener

una comprensión intuitiva es escribir el potencial efectivo, el cual se lee

V1d =−k
r
+

`2

2µ r2

De acuerdo a esta fórmula, vemos que se cumplen los siguientes límites

lı́m
r→0

V1d = ∞ lı́m
r→∞

V1d = 0

Más aún, si calculamos su derivada radial

V ′
1d =

k
r2 − `2

µ r3

vemos que es positiva V ′
1d > 0 para radios lo bastante grandes, y negativa para valores lo bastante

pequeños. Más aún, existe un solo punto crítico donde V ′
1d = 0, en el radio rcirc = `2/µk donde el

potencial toma el valor V1d =−µk2/2`2.

Estas consideraciones implican que el potencial efectivo es muy grande cerca del origen, luego

tiene un mínimo en el cual toma un valor negativo, y luego crece acercándose a cero por debajo

cuando r va a infinito. Esto nos permite dibujar un perfil a mano alzada del potencial efectivo, que

se puede ver en la figura 3.2.3. Es fácil notar que

Tendremos órbitas circulares en el mínimo de potencial con radio rcirc, para las cuales la

energía toma el valor mínimo E =−µk2/2`2.

Cuando la energía es negativa E < 0, habrá órbitas acotadas entre dos puntos de retorno:

uno cerca del origen donde crece la barrera centrífuga, y otro al alejarnos lo bastante del

mismo.

Cuando la energía es positiva o nula E ≥ 0, tendremos órbitas no acotadas que nunca pasan

por el origen.

Para profundizar el análisis, recordemos que en la Clase 4 encontramos una ecuación de segundo

orden para la órbita de un problema de dos cuerpos con fuerza central

d2u
dθ 2 +u =− µ

`2 ∂uV

En el caso particular del problema de Kepler, el potencial toma la forma V =−ku y por lo tanto su

derivada será ∂uV =−k. Con esto, la ecuación para la órbita nos queda escrita como

d2u
dθ 2 +u =

µ

`2 k
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Esto se puede simplificar mediante el cambio de variables ζ = u−µk/`2, con lo que obtenemos

d2ζ

dθ 2 +ζ = 0

Esta es la ecuación para un oscilador armónico, cuya solución podemos escribir inmediatamente en

la forma ζ = ζ0 cos(θ −θ0). Volviendo hacia atrás en nuestros cambios de variables para recuperar

la forma de la solución en términos de la variable original r, obtenemos

1
r
=

µk
`2 (1+ ecos(θ −θ0))

Donde el parámetro e = ζ0`
2/µk se denomina la excentricidad de la órbita. Esta ecuación da

la dependencia del radio con el ángulo, y por lo tanto determina completamente las órbitas del

problema de Kepler.

Para dar una interpretación física a la excentricidad, busquemos primero la posición de los ápsides

θaps de la órbita, es decir los puntos donde se cumple que dr/dθ = 0. Tomando una derivada de la

ecuación anterior y evaluando en θaps se cumple que

d
dθ

(
1
r

)
=−µk

`2 esin(θaps−θ0) = 0

Las soluciones de esta ecuación son θaps = θ0 y θaps = θ0 +π. Reemplazando en la solución para

la órbita obtenemos los radios correspondientes a estos dos ápsides, que valen

1
r±aps

=
µk
`2 (1± e)

Nótese que, dado que debe cumplirse r±aps > 0, tenemos que el ápside con el signo − solo existe

cuando e < 1. Dado que en los ápsides también se cumple que ṙ = 0, podemos reemplazar en la

fórmula de la energía, para obtener

E =
1
2

µ ṙ2 +
`2

2µr2 − k
r
=

µk2

2`2 (1± e)2 − µk2

`2 (1± e) =
µk2

2`2

(
e2 −1

)
Este resultado demuestra que el parámetro de excentricidad es una medida de la energía. En

particular

La excentricidad vale cero cuando la energía toma el mínimo valor posible (es decir, de

acuerdo al análisis de potencial efectivo, cuando la órbita es circular).

La excentricidad es menor que 1 cuando la energía es negativa, es decir para las órbitas

acotadas. Estas órbitas tienen dos ápsides r±aps, correspondientes a los dos puntos de retorno

del potencial efectivo.

La excentricidad es mayor que 1 cuando la energía es positiva, es decir para las órbitas

abiertas. Estas órbitas tienen un solo ápside r+aps, que corresponde al único punto de retorno

del potencial.

El caso e = 1 corresponde a una órbita abierta con energía nula, que también tiene un solo

ápside r+aps.
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Elipse

Parábola

Hipérbola

Figura 5.2.1: Secciones cónicas. La intersección de un plano cono un cono genera las curvas que realizan

las órbitas del problema de Kepler.

Nos gustaría tener una visión más geométrica de la forma de estas órbitas. Para esto, vamos a

analizar las secciones cónicas, es decir las curvas que se obtienen al cortar un cono con un plano.

En el espacio tridimensional R3 con coordenadas x,y,z, un cono cuya generatriz forma un ángulo

de π/4 respecto del eje z cumple la fórmula

x2 + y2 = z2

Por otro lado, un plano que contiene al eje y, formando un ángulo arctan(e) respecto del eje x al

que intersecta en x0, se describe con la ecuación

z = e (x− x0)

Reemplazando la segunda ecuación en la primera y operando obtenemos

x2 + y2 = e2 (x− x0)
2

Escribiendo esta fórmula en coordenadas polares en las que se cumple r2 = x2 + y2 mientras que

x = r cos(θ −θ0), nos queda

1
r
=

1
x0e

(1+ e cos(θ −θ0))

Comparando con la solución para la órbita de más arriba, podemos identificar la excentricidad

como la tangente del angulo formado entre el plano y el eje x. Es decir que
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Cuando e = 0 el plano es horizontal y la órbita resultante es la intersección de un plano

horizontal con un cono, o sea un círculo.

Cuando la excentricidad es menor que 1, el plano está inclinado en un ángulo menor que

π/4, lo que implica que intersectará el cono en una curva cerrada denominada elipse. Los

extremos de la elipse corresponden a los dos ápsides r±aps.

Esto nos recuerda a la primera ley de Kepler: los planetas se mueven en órbitas elípticas,

con el sol en uno de sus focos. Solo que el foco de nuestra elipse está en el origen de

la coordenada relativa, que en términos de las variables originales~r1 y~r2 corresponde la

posición~rcm del centro de masas. Solamente cuando recordamos que la masa del sol m1 es

mucho mayor que la de cualquier planeta m2, podemos aproximar~r1 ≈~rcm y se cumple la

primera ley.

El caso e = 1 corresponde a un ángulo de π/4, es decir una intersección donde el plano es

paralelo a la generatriz, la curva resultante es una parábola.

Para e > 1 tenemos que el plano está a más inclinado respecto del eje horizontal que la

generatriz, y por lo tanto la intersección es una hipérbola.

En el caso de la órbita elíptica, podemos identificar su semieje mayor a como la media distancia

entre los dos ápsides

a =
r+aps+ r−aps

2
=

1
2
`2

µk

(
1

1− e
+

1
1+ e

)
=

`2

µk
1

1− e2 =− k
2E

Por otro lado, el semieje menor b es la media distancia vertical entre los dos puntos que cumplen

que y = r sin(θ −θaps) es estacionario, o sea

dy
dθ

=
dr
dθ

sin(θ −θaps)+ r cos(θ −θaps) = 0

donde podemos usar la solución para la órbita para escribir la derivada en el primer término,

resultando en

−r2 µk
`2 e sin2 (θ −θaps)+ r cos(θ −θaps) = 0

Usando que en ese punto y = b y x = xmedio, donde xmedio es la posición en el eje x del centro de la

elipse, tenemos

−µk
`2 eb2 + xmedio = 0

Para determinar xmedio usamos el hecho geométrico de que

xmedio =
1
2
(
r−aps− r+aps

)
=

`2

2µk

(
1

1− e
− 1

1+ e

)
=

`2e
µk(1− e2)

Esto nos permite resolver b2 = `4/µ2k2(1− e2) o bien

b =
`2

µk
1√

1− e2
=

√
`2

µk
√

a
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r r

raps+

b

a

xmedio

r

raps-

Figura 5.2.2: Órbitas del problema de Kepler: la órbita hiperbólica (arriba a la izquierda) toma asintóticamente

la forma de dos rectas, que se consignan en línea punteada, al igual que la órbita parabólica

(derecha) tiene un sólo ápside. La órbita elíptica (abajo) tiene dos ápsides, se muestran también

sus semiejes mayor a y menor b, y el punto xmedio.

Ahora que tenemos a y b podemos usar la fórmula geométrica para el área de una elipse A = πab

lo que resulta en A = πa3/2
√
`2/µk. Pero si recordamos la segunda ley de Kepler podemos escribir

también la expresión A = T dA/dt = T `/2µ donde T es el tiempo que toma una revolución completa.

Eliminando A entre ambas fórmulas, nos queda

T = 2π

√
µ

k
a3/2

Esto tiene la forma de la tercera ley de Kepler: el cuadrado del período de un planeta es proporcional

al cubo del semieje mayor de la órbita.

El único problema con este resultado es que la constante de proporcionalidad depende del

planeta, y eso no es lo que descubrió Kepler. En efecto, reemplazando explícitamente k = Gm̃1m̃2
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y µ = m1m2/(m1 +m2), tenemos que

T = 2πa3/2
√

m1m2

Gm̃1m̃2(m1 +m2)

Sin embargo, dado que la masa del sol m1 es mucho mayor que la masa de cualquier planeta m2,

podemos despreciar m2 en esta expresión para obtener

T = 2πa3/2
√

m2

Gm̃1m̃2

En esta expresión, todavía tenemos la masa inercial m2 y la masa gravitacional m̃2 del planeta,

por lo que no reproduce correctamente los resultados de Kepler. La observación crucial que hizo

Newton es que si ambas masas coinciden entonces la constante de proporcionalidad entre el

cuadrado del período y el cubo de la distancia media al sol no depende del planeta, y se cumple la

tercera ley de Kepler.

Es interesante señalar que esta coincidencia que observó Newton entre masa inercial y masa

gravitacional fue denominada principio de equivalencia por Einstein, quien la puso en la base de

su Teoría de la Relatividad General.

Nota:

Isaac Newton se planteó explicar el movimiento de los planetas codificado en las leyes

de Kepler, usando las mismas reglas que rigen el movimiento en la Tierra, que habían

sido parcialmente elucidadas por Galileo. A ellos se refería con su célebre frase parado

en los hombros de gigantes.

Para hacerlo, tuvo que inventar casi completamente el cálculo diferencial. Su libro

Philosophiæ naturalis principia mathematica no fue publicado por la Royal Society de

Londres, lo que llevó a Newton a pelearse fuertemente con Hooke, entonces director

de la Sociedad. Además Leibniz, quien había visitado de Hooke en Londres, publicó

poco después su versión del cálculo diferencial. Esto llevó a Newton a sospechar que

Hooke le había mostrado a Leibniz sus manuscritos, lo que lo enojó tanto que se negó

a publicar sus descubrimientos de ninguna manera.

En ese momento recibió la visita de Edmund Halley, quien estaba intrigado por una

serie de apariciones históricas de cometas cada 76 años. Halley creía que se trataba

del mismo cometa, y postuló que los cometas se movían en torno al Sol de modo similar

como lo hacen los planetas. Estaba convencido de que podría aplicar los cálculos de

Newton a su problema. Para poder hacerlo, tuvo que convencer a Newton de publicar

los Principia y, como la Royal Society se negaba a invertir dinero en ellos, tuvo que

pagar la edición de su propio bolsillo.

De este modo, la humanidad está en deuda con Edmund Halley no sólo por identificar

su célebre cometa (que volvió a mostrarse 76 años después de su última aparición,

como Halley había predicho), sino también por haber hecho posible que no se perdiera
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el descubrimiento científico más importante de todos los tiempos, que sentara la semilla

de la Revolución Industrial.

5.2.2 Movimiento en el tiempo

En esta sección vamos a investigar cómo se recorren las órbitas del problema de Kepler a medida

que transcurre el tiempo. Es decir, queremos obtener explícitamente la evolución de las variables

θ y r como función de t. Si recordamos la ecuación para θ̇ = `/µr2 podemos escribir

t = t0 +
∫

θ

θ0

µr2

`
dθ

Usando la solución explícita para la órbita, tenemos que

t = t0 +
∫

θ

θ0

`3

µk2 (1+ ecos(θ −θ0))
2 dθ

La integración explícita depende del valor de la excentricidad e.

En el caso parabólico e = 1 se pueden usar identidades trigonométricas para escribir

t = t0 +
`3

4µk2

∫
θ

θ0

sec4
(

θ −θ0

2

)
dθ

Definiendo una nueva variable de integración ζ = tan
(

θ−θ0
2

)
esto se escribe

t = t0 +
`3

2µk2

∫
ζ

0
(1+ζ

2)dζ

lo que se integra fácilmente para dar

t = t0 +
`3

2µk2

(
tan
(

θ −θ0

2

)
+

1
3

tan3
(

θ −θ0

2

))
Esto es un polinomio cúbico en la tangente, que ahora se puede invertir para obtener θ(t).

En el caso e 6= 1 la integral es más complicada, pero también se puede obtener explícitamente.

Haciendo el mismo cambio de variables, obtenemos

t = t0 +
2`3

µk2

∫
ζ

0

1+ζ 2

(1+ e+(1− e)ζ 2)2 dζ

lo que se integra a

t = t0 +
2`3

µk2(e2 −1)

(
esin(θ−θ0)

1+ ecos(θ−θ0)
− 2√

e2−1
arctanh

(√
e−1 tan( θ−θ0

2 )
√

e+1

))

Ejercicio:

Utilice tablas de integrales o un software de manipulación algebraica como Mathetmatica

para obtener el movimiento angular como función del tiempo para los dos casos ante-

riores.



5.2 El problema de Kepler 69

En cuanto al movimiento radial en función del tiempo, recordemos de las Clase 3 que la integral

necesaria toma la forma

t = t0 +
∫ r

r0

dr√
2
µ

(
E − `2

2µr2 +
k
r

)
En términos de los parámetros orbitales dados por el semieje mayor a =−k/2E y la excentricidad

e2 = 2`2E/µk2 +1, esta integral se escribe

t = t0 +
√

µa
k

∫ r

r0

r dr√
e2 − (a− r)2

Cambiando variables a una nueva variable ζ conocida como anomalía excéntrica, según la fórmula

r = a(1− ecosζ ), tenemos que la integral se puede calcular de manera explícita, resultando en

t = t0 +

√
µa3

k
(ζ − esinζ )

Esto no se puede invertir para obtener r(t), pero de todas maneras ofrece una descripción completa

del movimiento radial como función del tiempo.

5.2.3 Vector de Laplace-Runge-Lenz

El problema de Kepler tiene una característica esencial que lo diferencia de los demás problemas

de dos cuerpos con fuerza central. Para describirla, vamos a volver brevemente a la mecánica

vectorial, escribiendo

~̇p = Fr(r)ř

Donde Fr(r) es la componente radial de la fuerza. Tomando el producto vectorial con el momento

angular, se puede escribir

~̇p×~̀= Fr(r)ř×~̀= Fr(r)
µ

r
~r× (~r×~̇r)

Usando la identidad ~A× (~B×~C) = ~B(~A ·~C)−~C(~A ·~B) y reordenando

~̇p×~̀= Fr(r)r2
µ

(
~r
r2 ṙ− ~̇r

r

)
Nótese que en esta expresión tenemos a ambos lados derivadas totales respecto del tiempo. Esto

se puede hacer explícito

d
dt

(
~p×~̀

)
+Fr(r)r2

µ
d
dt

(
~r
r

)
= 0

Para el caso particular del problema de Kepler Fr(r) =−k/r2 con lo cual los dos términos se suman

en una sola derivada total, de la forma

d
dt

(
~p×~̀− kµ ř

)
︸ ︷︷ ︸

~V

= 0
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Por lo tanto, vemos que se conserva el vector ~V = ~p×~̀− kµ ř, conocido como vector de Laplace-

Runge-Lenz. En esta prueba hemos usado la forma explícita del potencial newtoniano, por lo que

esta conservación es una propiedad exclusiva del problema de Kepler.

Para entender un poco más lo que significa el vector ~V , probemos primero que es perpendicular al

momento angular

~V ·~̀= (~p×~̀) ·~̀− kµ ř ·~̀= 0

lo que implica que ~V yace en el plano de la órbita. Por otro lado, tomando su producto escalar con

~r nos queda

~V ·~r = (~p×~̀) ·~r− kµr = `2 − kµr

donde en la segunda igualdad usamos (~A×~B) ·~C = (~B×~C) ·~A = (~C×~A) ·~B. Llamando θV el ángulo

entre ~V y el eje x, esto se puede reordenar en la forma

1
r
=

kµ

`2

(
1+

|~V |
µk

cos(θ −θV )

)

Lo que coincide con la solución para la órbita si identificamos la excentricidad e = |~V |/µk y el

ángulo θV = θaps. Esta última identificación nos dice que ~V apunta en la dirección del ápside, es

decir a lo largo del eje mayor. Por lo tanto, la conservación de ~V implica en particular que el eje

mayor de la órbita no rota a medida que transcurre el movimiento.

Nota:

En el siglo XIX, el astrónomo Urbain Le Verrier observó que el eje mayor de la órbita

del planeta Urano giraba a medida que transcurría el tiempo, lo que implica que no se

conserva el vector de Laplace-Runge-Lenz. Atribuyó esta anomalía a la existencia de

un planeta transuránico cuya posición calculó. El planeta Neptuno fue posteriormente

descubierto a menos de 1o de donde lo había predicho Le Verrier.

Siguiendo el mismo sistema, Le Verrier propuso la existencia de un planeta aún más

cercano al sol que Mercurio, para explicar una anomalía similar observada en el

movimiento de éste. Sin embargo, debido a las dificultades asociadas a observar en

dirección al Sol, el hipotético planeta Vulcano nunca fue descubierto.

En el siglo XX Albert Einstein explicó las anomalías de la órbita de Mercurio por

medio de la teoría de la relatividad general, en la cual el potencial newtoniano no es

exactamente −k/r sino que contiene términos adicionales denominados correcciones

postnewtonianas. Debido a estas correcciones, el vector de Laplace-Runge-Lenz no

se conserva cerca del Sol, donde son más importantes. Esto dio fin a la búsqueda del

planeta Vulcano.
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5.3 Resumen

En esta clase resolvimos el problema de Kepler, es decir el movimiento de un sistema de dos

cuerpos con fuerza central gravitacional. Encontramos la forma de sus órbitas, probamos que son

de secciones cónicas, y encontramos también su evolución temporal.

En ese camino, demostramos las dos leyes de Kepler que aún nos faltaban. En la demostración

de la segunda ley de Kepler, nos encontramos con que la masa gravitacional y la masa inercial de

los cuerpos debe coincidir, un ingrediente fundamental que motivó a Einstein en su teoría de la

Relatividad General.

Finalmente, descubrimos que el caso particular del problema de Kepler se distingue por tener un

vector conservado que apunta en la dirección del eje mayor de la órbita, el vector de Laplace-

Runge-Lenz. Nótese que no hemos identificado ninguna invarianza que dé origen a esta cantidad

conservada, volveremos a esta cuestión más adelante.





6. El problema de dos cuerpos VI: Dispersión

6.1 Objetivos

Ernest Rutherford

El problema de la dispersión en Mecánica corresponde a

lo que en los cursos básicos de física llamábamos choque

elástico.

Durante un choque elástico, dos partículas que inicial-

mente se dirigían la una contra la otra viajando en direc-

ciones opuestas a lo largo de la misma recta, colisionan

y son dispersadas, alejándose a lo largo de una nue-

va recta que forma un cierto ángulo con la dirección de

incidencia.

Un punto a recordar es que en los problemas de cho-

que elástico que resolvimos en el pasado, tal ángulo de

dispersión siempre se incluía como uno de los datos ex-

ternos necesarios para resolver el problema. En esta

clase vamos a aprender a calcularlo.

6.2 El problema de la dispersión

En esta sección aprenderemos los conceptos básicos que se utilizan en el análisis de la dispersión.

Con el fin de mantener algún grado de intuición, los introduciremos en el caso particular de una

colisión de esferas rígidas, para generalizarlos luego a una interacción general.
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Figura 6.2.1: Problema de dispersión de esferas rígidas. De izquierda a derecha: los dos cuerpos se acercan

uno al otro siguiendo rectas paralelas separadas por una distancia s, colisionan cuando la

distancia entre sus centros es raps, y se dispersan siguiendo nuevamente rectas paralelas, que

forman un ángulo Θ con la dirección de incidencia.

Primero estudiaremos cómo se obtiene el ángulo de dispersión a partir del potencial, luego

introduciremos la idea de sección eficaz como una medida de la dispersión, y finalmente veremos

cómo se aplica este conocimiento en los experimentos para obtener información sobre el potencial.

6.2.1 Ángulo de dispersión

Comencemos analizando un problema sencillo de choque, para identificar algunos elementos

esenciales que luego podremos generalizar. El experimento consta de tres etapas

1. Inicialmente tenemos dos partículas que viajan en sentidos contrarios siguiendo dos rectas

paralelas que están separadas por una cierta distancia transversal. Llamamos dirección de

incidencia a la dirección de estas rectas, y parámetro de impacto a la distancia s que las

separa.

2. Estas partículas se van acercando hasta que en algún momento “entran en contacto” y

se produce la colisión. La idea intuitiva de “contacto” se puede representar mediante un

potencial de esfera rígida, que toma la siguiente forma

V (|~r1 −~r2|) =

 0 |~r1 −~r2|> raps

∞ |~r1 −~r2|< raps

donde~r1 y~r2 denotan la posición de cada una de las partículas, ambas rodeadas por una

esfera rígida de radio raps/2. Naturalmente estas partículas se acercarán la una a la otra, y

“chocarán” cuando |~r1 −~r2|= raps.

3. Luego del evento, las partículas se alejan de nuevo moviéndose en sentidos opuestos a lo

largo de rectas paralelas. Llamamos dirección de dispersión a la dirección de estas nuevas

rectas, y ángulo de dispersión al ángulo Θ que forman con la dirección de incidencia.
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Dadas las características del problema descripto, es evidente que se trata de un problema de

dos cuerpos con interacción central. Por lo tanto, podemos seguir los pasos de la Clase 3 para

describirlo en el sistema de coordenadas en el centro de masas, en términos de una sola partícula

ficticia que se mueve en un potencial dado por V (r) dado por

V (r) =

 0 r > raps

∞ r < raps

Esta partícula se acerca inicialmente al origen siguiendo una recta en la dirección de incidencia

que pasa a una distancia s del mismo, luego “tiene lugar la colisión”, y finalmente la partícula se

aleja del origen siguiendo una recta en la dirección de dispersión.

Analicemos este problema aplicando el método del potencial efectivo que estudiamos en la Clase

3. Para construirlo, necesitamos el valor del momento angular, que vendrá dado por

`= |~r×~p|= p r sin(r̂p)︸ ︷︷ ︸
s

= ps =
√

2µE s

donde usamos el hecho de que el momento angular se conserva para evaluarlo en algún instante

previo a la colisión, cuando el momento lineal de la partícula cumplía p2 = 2µE. Con esto podemos

escribir para el potencial efectivo

Veff(r) =

 E s2/r2 r > raps

∞ r < raps

Ahora bien, el movimiento tendrá lugar en la región Veff < E. La primera linea del potencial efectivo

nos dice que esta región está determinada por r > s (esto es una propiedad geométrica que es

evidente en el diagrama). Por otro lado, la segunda línea nos dice que debe cumplirse r > raps. Por

lo tanto, si s > raps tendremos un punto de retorno en r = s (algo que nuevamente se puede ver en

el diagrama). Por otro lado, si s < raps “se produce la colisión”, es decir que el punto de retorno

está en r = raps.

Como vimos en la Clase 3, en los puntos de retorno se invierte la velocidad radial. Por supuesto

nada sucede allí con la componente angular de la velocidad. Esto significa que si s < raps entonces

en r = raps la trayectoria se quiebra, del modo que se ve en el diagrama. El ángulo θaps formado

por el vector~r con la dirección de incidencia cumplirá

sinθaps =− s
raps

Dado que la reflexión invierte la componente radial de la velocidad, un análisis geométrico nos

permite obtener la dirección de dispersión, la cual forma un ángulo Θ con la de incidencia, dado

por

Θ = 2θaps−π

Es un ejercicio sencillo probar, usando las dos fórmulas anteriores, que se cumple que

s = raps sin
(

Θ

2

)
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Figura 6.2.2: Problema de dispersión en el centro de masas. A la izquierda vemos el problema de dispersión

de esferas rígidas, ahora contra una partícula puntual incidiendo contra una esfera de radio

doble. Se acerca siguiendo una recta separada una distancia s del centro, colisiona cuando la

distancia es raps, y se dispersa siguiendo nuevamente una recta, que forma un ángulo Θ con la

dirección de incidencia. A la derecha vemos un potencial general, la trayectoria se suaviza pero

los conceptos de distancia s y ángulo de dispersión Θ se mantienen en la región asintótica.

Con esto, aprendemos que el ángulo de dispersión depende del parámetro de impacto s y del radio

raps que es una característica del potencial. Más aún, si medimos como varía el ángulo Θ como

función del parámetro de impacto s, podemos encontrar el radio raps del potencial de interacción.

Es decir que podemos utilizar un experimento de choque para obtener información acerca del

potencial.

En este punto, resulta conveniente notar que los cálculos que realizamos hasta aquí se pueden

generalizar sin mayor dificultad para un potencial arbitrario. En otras palabras, en lugar de limitarnos

a estudiar partículas que colisionan como si fueran esferas rígidas, nos permitimos también

considerar aquéllas que son esferas “blandas”, en el sentido de que su máxima proximidad durante

un choque depende de su energía.

En el caso general, para calcular el ángulo de dispersión Θ en función del parámetro de impacto s,

utilizaremos la solución para la órbita que obtuvimos en la Clase 4

θ = θ0 −
∫ u

u0

du√
1
s2

(
1− V

E

)
−u2

donde la hemos escrito en términos de la variable u = 1/r, y hemos reemplazado el momento

angular según lo que obtuvimos más arriba `2 = 2µEs2. Es fácil ver que si ponemos el instante

inicial muy en el pasado tenemos que los valores iniciales satisfacen u0 = 0 y θ0 = π. Entonces

θ = π −
∫ u

0

du√
1
s2

(
1− V

E

)
−u2
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Podemos separar la integral en el ápside de la órbita y poner

θ = π −
∫ uaps

0

|du|√
1
s2

(
1− V

E

)
−u2

+
∫ u

uaps

|du|√
1
s2

(
1− V

E

)
−u2

Donde el + en el segundo término viene del hecho de que u está moviéndose en sentido contrario,

por lo que du cambiará de signo. Si ahora ponemos el instante final muy en el futuro, tenemos que

u = 0 y el ángulo corresponde al ángulo de dispersión θ = Θ

Θ = π −
∫ uaps

0

|du|√
1
s2

(
1− V

E

)
−u2

+
∫ 0

uaps

|du|√
1
s2

(
1− V

E

)
−u2

= Θ = π −2
∫ uaps

0

du√
1
s2

(
1− V

E

)
−u2

El ápside uaps que entra en el límite superior de integración, está definido como el punto donde la

velocidad radial se anula. Es decir que cumple la fórmula

u2
aps =

1
s2

(
1− V (1/uaps)

E

)
Una vez calculada la integral, tendremos una forma explícita para la dependencia en s del ángulo

de dispersión Θ.

Ejercicio: esferas rígidas

Probar que estas fórmulas reproducen, en el caso del potencial de esfera rígida, el

resultado para el ángulo de dispersión que encontramos más arriba mediante conside-

raciones geométricas.

Ejemplo: dispersión de Rutherford

En el problema de la dispersión de Rutherford, electrones son disparados sobre un ion

negativo, por lo que el potencial en cuestión es un potencial coulombiano repulsivo

V (r) =
k
r

donde k = Ze2/4πε0 con e la carga de electrón, Ze la carga del ion, y ε0 es la permeabi-

lidad eléctrica del vacío. Las órbitas se pueden resolver de manera completamente

análoga a la del problema de Kepler, obteniendo

1
r
=−µk

`2 (1− ecos(θ −θaps))

Comparando con los resultados de la Clase 5 notamos que, como podría esperarse,

hemos cambiando el signo de k respecto de la expresión kepleriana. También hemos

cambiado el signo delante de e, esto corresponde a elegir θ0 = θaps−π, de modo tal

que en el ápside tenemos raps > 0 cuando e > 1.

Tanto en el pasado lejano cuando la partícula estaba incidiendo, cuanto en el futuro

lejano cuando se aleja después de haber sido dispersada, se cumple que r → ∞ y por

lo tanto

0 = 1− e cos(θ∞ −θaps)
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esta ecuación tiene dos soluciones θ±
∞ = θaps±Arccos(1/e), que corresponden a los

valores del ángulo para la partícula incidente y para la partícula dispersada. Esto implica

que el ángulo de dispersión vendrá dado por Θ = π − (θ+
∞ −θ−

∞ ) = π −2Arccos(1/e), lo

que nos permite reescribir

0 = 1+ e sin
(

Θ

2

)
De modo que la excentricidad está relacionada con el ángulo de dispersión. Usando

nuestros parámetros físicos tenemos que

e2 −1 =
2E`2

µk2 =
(2Es)2

k2 = cot2
(

Θ

2

)
Lo que nos permite resolver

s =
k

2E
cot
(

Θ

2

)
Nota:

El 19 de octubre de 2017 el astrónomo canadiense Robert Weryk descubrió un objeto

que se desplazaba en dirección al Sol siguiendo una órbita hiperbólica. Es decir que

no se trataba de un cuerpo menor del Sistema Solar, sino que provenía del espacio

interestelar. Se lo bautizó 1I/’Oumuamua donde 1I indica que se trata del primer

objeto interestelar identificado, y ’oumuamua es una palabra hawaiana que significa

“explorador”.

Un descubrimiento similar abre la novela “Cita con Rama” del autor inglés Arthur C.

Clarke. En el caso de la novela, el objeto era realmente un explorador, es decir una

nave estelar de una civilización extraterrestre.

Con los elementos que estudiamos en esta clase, estamos en condiciones de calcular

el ángulo con el que fueron desviados ’Oumuamua o Rama al abandonar el sistema

solar.

6.2.2 Sección eficaz

En el caso sencillo del potencial de esfera rígida, es evidente que si el parámetro de impacto es

mayor al radio de las esferas s > raps no se produce ningún choque. En la sección anterior fuimos

capaces de probar formalmente este hecho intuitivo hallando los puntos de retorno del potencial

efectivo.

Esto significa que si arrojamos hacia el origen una variedad de partículas con diferentes parámetros

de impacto, sólo serán dispersadas aquéllas que cumplen s < raps. Podríamos verificar esto

disponiendo del otro lado una pantalla plana perpendicular a la dirección de incidencia, sobre la

cual obtendremos una “sombra” circular de radio raps. La superficie de tal sombra

σT = π r2
aps
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se denomina sección eficaz total y es una medida de qué tan eficiente es el potencial de esfera

rígida a la hora de provocar la dispersión de partículas. Podemos reescribir la fórmula anterior de

manera trivial como una integral en el parámetro de impacto

σT =
∫ raps

0

∫ 2π

0
sdsdΦ

donde hemos agregado también una integral en el ángulo Φ que gira alrededor de la dirección de

incidencia. Ahora bien, en la sección anterior aprendimos que el parámetro de impacto s se puede

expresar como una función del ángulo de dispersión Θ, lo que nos permite cambiar variables de

integración para obtener

σT =
∫

π

0

∫ 2π

0
s
∣∣∣∣ ds
dΘ

∣∣∣∣ dΘdΦ =
∫

Ω

s
sinΘ

∣∣∣∣ ds
dΘ

∣∣∣∣︸ ︷︷ ︸
σ(Θ)

dΩ

Donde dΩ = sinΘdΘdΦ es la medida de integración sobre la esfera que rodea el origen. En la

última igualdad hemos reescrito la sección eficaz total como la integral sobre tal esfera de una

sección eficaz diferencial, que está definida como

σ(Θ) =
s

sinΘ

∣∣∣∣ ds
dΘ

∣∣∣∣
Esta magnitud es una medida de qué tan eficiente resulta este potencial para dispersar partículas

con la dirección definida por el ángulo Θ.

Si bien introdujimos los conceptos anteriores motivándolos con el potencial de esfera rígida, lo

cierto es que las últimas dos fórmulas pueden utilizarse como una definición general de sección

eficaz diferencial y total respectivamente.

La única salvedad es que para expresar la sección eficaz diferencial como una función del ángulo,

necesitamos que la expresión para s(Θ) sea univaluada. Este no es el caso si dos o más parámetros

de impacto diferentes resultan en el mismo ángulo de dispersión. Veremos más adelante que en

este caso la generalización más útil de la definición de arriba es

σ(Θ) = ∑
n

sn

sinΘ

∣∣∣∣dsn

dΘ

∣∣∣∣
donde la suma corre sobre los diferentes valores sn del parámetro de impacto que resultan en el

mismo ángulo de dispersión Θ.

Ejercicio:

Use la fórmula que obtuvimos en la sección previa, que relaciona el ángulo de dispersión

con el parámetro de impacto en el caso de la esfera rígida, para calcular la sección

eficaz diferencial σ(Θ) del este problema.

Use el resultado para recuperar la sección eficaz total σT que escribimos más arriba.
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Ejemplo: dispersión de Rutherford

Usando la fórmula que relaciona el ángulo de dispersión con el parámetro de impacto

para el problema de la dispersión de Rutherford, podemos calcular la derivada

ds
dΘ

=− k
4E

csc2
(

Θ

2

)
Esto nos permite obtener para la sección eficaz diferencial

σ(θ) =
k

2E cot
(

Θ

2

)
sinΘ

k
4E

csc2
(

Θ

2

)
=

(
k

4E

)2

csc4
(

Θ

2

)
donde fue necesario utilizar algunas identidades trigonométricas.

Si quisiéramos calcular la sección eficaz total, tendríamos

σT =
∫

Ω

σ(θ)dΩ =

(
k

4E

)2 ∫
csc4

(
Θ

2

)
sinΘdΘdΦ

lo que se puede reescribir en términos de la variable ζ = sin(Θ/2) como

σT = 2π

(
k

2E

)2 ∫ 1

0

dζ

ζ 3 → ∞

con lo que vemos que la sección eficaz total diverge. Para interpretar este resultado,

vayamos hacia atrás para escribir la sección eficaz total en su forma original en términos

de una integral en el parámetro de impacto

σT =
∫

∞

0

∫ 2π

0
sdsdΦ

donde para recuperar el resultado infinito tuvimos que integrar hasta valores de s

arbitrariamente grandes. Esto significa que todas las partículas son dispersadas sin

importar su parámetro de impacto. En otras palabras, la interacción de Coulomb es

una fuerza de largo alcance.

Nota:

A principios del siglo XX, el descubridor del electrón Joseph John Thomson propuso

que el átomo estaba compuesto por un conjunto de electrones, distribuidos dentro de

una nube de carga positiva, en lo que se llamó el modelo del budín de pasas.

Para testear esta idea, en 1911 Ernest Rutherford hizo pasar partículas alfa a través

de una hoja fina de aluminio. Observó ángulos de dispersión muy grandes, que no

eran compatibles con el budín de pasas, sino con que toda la carga positiva estuviera

acumulada en un solo punto. Descubrió así el núcleo atómico.

6.2.3 Experimentos de dispersión

La razón para definir una sección eficaz diferencial es que resulta ser una magnitud medible con

relativa facilidad en un experimento de dispersión. Tal experimento consiste en hacer colisionar

dos haces de partículas que viajan en direcciones contrarias, y estudiar el producto de la colisión.
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Figura 6.2.3: Experimento de dispersión: dos haces de partículas desplazándose en direcciones contrarias

inciden uno contra el otro (primera figura). Un subhaz del haz más concentrado (remarcado

con un óvalo en la primera figura) incide contra una partícula del haz más diluido, cada una de

sus partículas componentes lo hace con su propio parámetro de impacto (segunda figura). El

mismo problema visto desde el centro de masas muestra varias partículas incidiendo contra un

centro dispersor (tercera figura).
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Para simplificar el problema, notemos lo siguiente

La primera hipótesis que tenemos que hacer para describir este experimento es que dentro

de cada uno de los haces las diferentes partículas no interactúan entre sí.

La segunda hipótesis es que dada una partícula cualquiera del haz más concentrado, esta

interactúa con una sola del haz más diluido.

De esta manera, el problema se descompone en un conjunto de problemas similares, en cada

uno de los cuales un haz de partículas (que es un sub-haz del haz más denso) incide sobre una

sola partícula (que pertenece al haz más diluido). Tomando ahora una partícula cualquiera del

sub-haz incidente, podemos describir su interacción con la partícula que le corresponde del haz

diluido en el sistema centro de masas. En este sistema y como sabemos de las secciones previas,

el problema corresponde al de una partícula ficticia interactuando con un potencial central en el

origen.

Es evidente que el sistema centro de masas estará en una posición distinta para cada una de

las partículas del sub-haz incidente. Sin embargo, se puede verificar que el efecto de trasladar el

sistema centro de masas de cada una de ellas al mismo punto es solamente el de reescalear la

intensidad del sub-haz. Por lo tanto, terminamos reduciendo el problema al de un haz de partículas

ficticias que inciden sobre un potencial central en el origen.

Vamos a definir la intensidad I del haz incidente como el número de partículas que atraviesan

por unidad de tiempo la unidad de área perpendicular a la dirección de incidencia. Por lo tanto, si

tomamos un anillo de radio s y ancho ds, y cortamos un pequeño sector angular dΦ, tendremos el

área dA = sdsdΦ resultante es atravesada durante un tiempo dt por un número de partículas dado

por

dN = IdAdt = IsdsdΦdt

Todas estas partículas saldrán dispersadas en la dirección Θ que corresponde al valor de s y con

el mismo valor de Φ, por lo que podemos escribir

dN = Is
∣∣∣∣ ds
dΘ

∣∣∣∣ dΘdΦdt = I
s

sinΘ

∣∣∣∣ ds
dΘ

∣∣∣∣ dΩdt

Ahora bien, si hubiera más de un valor del parámetro de impacto que resultara en el mismo ángulo

de dispersión, el número total de partículas dispersadas en una dada dirección será

dN = I ∑
n

sn

sinΘ

∣∣∣∣dsn

dΘ

∣∣∣∣ dΩdt

Escrito en términos del diferencial de área dÃ = r2dΩ de una esfera de radio r, tenemos

dN =
I
r2 σ(Θ)dÃdt

Es decir que si nos situamos en el sistema centro de masas a una distancia r del origen y contamos

el número total de partículas dN que atraviesan un área dÃ durante un tiempo dt, podemos obtener

con facilidad la sección eficaz diferencial σ(Θ) del choque correspondiente.
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Figura 6.2.4: Experimento de dispersión. Las dN partículas que inciden durante un tiempo dt con parámetros

de impacto entre s y s+ds se dispersan con ángulos entre Θ y Θ+dΘ.

El problema de dispersión inversa consiste en obtener información sobre el potencial a partir de la

sección eficaz diferencial medida en un experimento de dispersión.

Para ver un primer ejemplo de esto, escribamos la integral para el ángulo de dispersión que

habíamos encontrado más arriba en la forma

Θ = π −2
∫

ζaps

0

dζ√
1− V

E −ζ 2

donde definimos la nueva variable de integración ζ = su y el límite superior de integración se

obtiene de

ζ
2
aps = 1− V (s/ζaps)

E

Si el potencial se anula en el infinito, para s lo bastante grande el límite superior de integración

será ζaps = 1 y en la integral tenemos V/E pequeño, por lo que podremos escribir

Θ = π −2
∫ 1

0

dζ√
1−ζ 2

= 0

es decir que un potencial que va a cero lo bastante rápido en el infinito no dispersa partículas con

parámetro de impacto grande.

Por otro lado, si s es pequeño y la energía es lo bastante grande, estamos en la situación que se

conoce como dispersión profunda. En este caso, si el potencial está acotado en el origen podemos

escribir

ζ
2
aps = 1− V (0)

E
= 1

donde en la segunda igualdad asumimos que la energía es lo bastante grande E � |V (0)|. La
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Figura 6.2.5: Dispersión en arcoíris. El potencial V tiene un máximo, lo que implica que partículas con

parámetros de impacto s muy grandes o muy pequeños no serán dispersadas. Esto resulta en

que el ángulo de dispersión Θ tiene un máximo Θmax en algún valor intermedio del parámetro

de impacto. La sección eficaz diferencial σ(Θ) diverge en Θmax y cae a cero para ángulos

mayores.

integral se puede separar en dos partes, en la forma

Θ = π −2
∫ s

0

dζ√
1− V

E −ζ 2
−2

∫ 1

s

dζ√
1− V

E −ζ 2

como s es pequeño podemos descartar la primera integral, y en la segunda reemplazar V por

V (0)� E, para obtener nuevamente

Θ = π −2
∫ 1

0

dζ√
1−ζ 2

= 0

Es decir que para un potencial acotado en el origen y que se anula rápidamente en infinito,

tendremos ángulo de dispersión nulo a energía grande para los dos valores extremos del parámetro

de impacto. Esto quiere decir que Θ(s) debe tener un máximo en algún valor intermedio de s.

Supongamos primero que cuando el ángulo de dispersión alcanza su máximo es aún menor que π.

Dado que en el máximo se cumple que dΘ/ds = 0, para ese ángulo la sección eficaz será infinita.

Por otro lado siendo ese ángulo el máximo en el cual encontraremos partículas dispersadas, la

sección eficaz caerá a cero para ángulos mayores.

Este fenómeno se conoce como dispersión en arcoíris. Razonando en sentido inverso, podemos

afirmar que cuando un experimento presenta dispersión en arcoíris el potencial va a cero a

distancias grandes y está acotado a distancias pequeñas.

También podría suceder que el valor máximo del ángulo de dispersión fuera mayor que π. Esto se

explica si para valores intermedios del parámetro de impacto el potencial efectivo tiene un máximo.
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Figura 6.2.6: Dispersión gloriosa. El potencial efectivo V1d tiene un máximo, lo que implica que para algún

valor del parámetros de impacto s la energía será similar al máximo del potencial, con lo que la

partícula se moverá muy lentamente en la dirección radial allí. Esto resulta en que el ángulo de

dispersión Θ crecerá mucho, superando π, por lo que debemos corregirlo tomando ΘModπ . La

sección eficaz diferencial σ(Θ) diverge en Θ = 0,π.

Una partícula que incide con una energía similar a la energía del máximo permanece mucho

tiempo dando vueltas cerca del origen, por lo que el ángulo de dispersión resultante resulta mayor

que π. Dado que sólo medimos ángulos entre 0 y π, el ángulo medido sería ΘModπ = Θ+nπ < π

con n ∈ Z. El gráfico resultante para ΘModπ como función de s presentaría varias reflexiones en

ΘModπ = 0 y ΘModπ = π.

Para cualquier ángulo entre 0 y π, vemos que hay varios valores de s que contribuyen al mismo

ángulo de dispersión. Más aún, en cada uno de los valores de s para los cuales ΘModπ = 0 o

ΘModπ = π, se cumple que sinΘ = 0 cuando s 6= 0, por lo que el cociente en la sección eficaz

diferencial diverge y el resultado es infinito.

Este fenómeno se conoce como dispersión gloriosa. Invirtiendo el razonamiento, cuando un

experimento presenta dispersión gloriosa, sabemos que el potencial efectivo tiene un máximo en

los valores intermedios del parámetro de impacto.
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6.3 Resumen

En esta clase estudiamos el problema choque de partículas con las herramientas que aprendimos

para el problema de dos cuerpos. Pudimos calcular el ángulo de dispersión, que en los problemas

de choque de los cursos básicos siempre se nos daba como un dato. Vimos que el resultado

depende en detalle de la forma del potencial.

Definimos la sección eficaz diferencial y la sección eficaz total en términos del ángulo de dispersión,

y vimos que esas magnitudes pueden medirse mediante experimentos de dispersión de haces de

partículas.

Fuimos capaces de discernir diferentes comportamientos de la sección eficaz diferencial que

corresponden a propiedades específicas del potencial, como la de estar acotado a distancias

pequeñas y grandes, y tener un máximo para valores intermedios del parámetro de impacto.



7. Cuerpo rígido I: Rotaciones

7.1 Objetivos

Leonhard Euler

En esta clase vamos a estudiar las transformaciones de

rotación espacial. Para esto, tendremos que aprender

a trabajar con transformaciones lineales representadas

en términos de matrices, e identificar cuáles de ellas

corresponden a lo que llamamos una rotación.

Si bien aprenderemos conceptos e ideas que son muy

útiles en varios ámbitos de la física, nuestro interés in-

mediato está en su aplicación a la dinámica del cuerpo

rígido, que desarrollaremos en las clases subsiguientes.

7.2 Rotaciones espaciales

Durante esta clase vamos a concentrarnos en la descripción vectorial del espacio, donde a

cada punto P le corresponde un vector~r cuyas componentes (x,y,z) en algún sistema cartesiano

representan las coordenadas del punto en ese sistema. Supongamos que aplicamos sobre (x,y,z)

una transformación que nos da un nuevo conjunto de coordenadas (x′,y′,z′). Podemos interpretar

esto de dos maneras

1. La transformación actúa sobre el espacio, tomando el punto P representado por el vector~r

con coordenadas (x,y,z), y transformándolo en otro punto P′ representado por el vector~r′

con coordenadas (x′,y′,z′). Esto se conoce como el punto de vista activo.
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Figura 7.2.1: Punto de vista activo y pasivo de una transformación: en este caso ejemplificado para una

rotación en el plano. El punto de vista activo (izquierda) interpreta la transformación como

alterando la realidad física, cambiando los vectores. El punto de vista pasivo (derecha) lo

entiende como un cambio en la descripción de la misma situación física.

2. La transformación actúa sobre el sistema de coordenadas, tomando el sistema donde el

punto P está representado por el vector~r con coordenadas (x,y,z) y transformándolo en otro

sistema donde el mismo punto P está representado por el mismo vector~r que en el nuevo

sistema tiene coordenadas (x′,y′,z′). Este se denomina punto de vista pasivo.

En lo que sigue vamos a usar preferentemente el punto de vista activo, pero todo lo discutido se

puede reformular en términos del punto de vista pasivo.

Las transformaciones lineales son aquéllas que se pueden representar en términos de una matriz

invertible M, la cual transforma un vector~r en otro vector~r′, según la fórmula

~r′ = M ·~r

Aquí, para que la expresión de arriba tenga sentido como producto matricial, estamos considerando

al vector~r como una matriz columna

~r =


x

y

z


Si usáramos el punto de vista pasivo, la matriz cambiaría las coordenadas (~r) = (x,y,z) del vector~r

en el sistema de coordenadas original, por otras coordenadas (~r)′ = (x′,y′,z′) las cuales representan

al mismo vector, pero en otro sistema de coordenadas. Nótese que usamos la notación en

paréntesis (~r) para referirnos a las coordenadas del vector~r en un dado sistema. La operación

sería exactamente la misma que escribimos arriba, sólo que en términos de la nueva notación

(~r)′ = M · (~r)

El conjunto de todas las transformaciones lineales que actúan sobre el espacio forma una estructura
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matemática conocida como grupo. Para los fines de este curso, un grupo es un conjunto de

operaciones que cumplen las siguientes tres condiciones

1. Propiedad de clausura: dadas dos transformaciones del conjunto, su aplicación sucesiva

también resulta en una transformación del mismo conjunto.

2. Existencia de identidad: hay en el conjunto una transformación tal que al aplicarla antes o

después de cualquier otra, no tiene ningún efecto.

3. Existencia de inversa: para cualquier transformación del conjunto existe otra tal que, aplicadas

ambas en sucesión, no producen ningún efecto.

Esta definición puede parecer un tanto abstracta pero, como veremos inmediatamente, se vuelve

muy simple cuando la aplicamos a los ejemplos concretos. Comencemos con el conjunto de las

transformaciones lineales antes definidas, y probemos que ese conjunto forma un grupo. Para

esto, tendremos que verificar que se cumplen estas tres propiedades

1. Dadas dos transformaciones lineales M1 y M2, la aplicación sucesiva de M2 y M1 también

es una transformación lineal. Para ver esto, tomamos un vector cualquiera~r y primero le

aplicamos M1, definiendo~r′ según

~r′ = M1 ·~r

Sobre este resultado~r′ aplicamos subsecuentemente M2, definiendo un nuevo vector~r′′ en

la forma

~r′′ = M2 ·~r′ = M2 · (M1 ·~r) = (M2 ·M1)︸ ︷︷ ︸
M

·~r

donde en la segunda igualdad usamos la asociatividad del producto de matrices para definir

una nueva matriz M. En esta expresión, es evidente que si M2 y M1 son matrices invertibles,

entonces M también lo es. De este modo tenemos una matriz invertible M que toma un vector

~r y lo transforma en un nuevo vector~r′′, realizando una transformación lineal.

Esto prueba la propiedad de clausura: la aplicación sucesiva de dos transformaciones lineales

resulta en una nueva transformación lineal.

2. Existe trivialmente una transformación identidad que deja cualquier vector invariante. Está

dada por la matriz identidad I, que es una matriz invertible que aplicada a un vector cualquiera

~r actúa según

I ·~r =~r

Es decir que deja el vector invariante. Esto implica que dada otra transformación cualquiera

representada por una matriz M tenemos que

M · (I ·~r) = M ·~r = I · (M ·~r)
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Donde en la segunda igualdad usamos la propiedad de invarianza de más arriba, pero con

el nuevo vector~r′ = M ·~r.

Esto prueba que la transformación identidad no tiene ningún efecto aplicada antes o después

de cualquier otra transformación.

3. Dada cualquier transformación lineal definida por la matriz M y cualquier vector~r, definimos

~r′ = M ·~r

Dado que por definición la matriz M es invertible, podemos usar la matriz inversa M−1 para

definir una nueva transformación lineal. Si la hacemos actuar sobre~r′ obtenemos

M−1 ·~r′ = M−1 · (M ·~r) = (M−1 ·M)︸ ︷︷ ︸
I

·~r =~r

donde en la segunda igualdad utilizamos la asociatividad del producto de matrices, y la

propiedad de matriz inversa.

Con esto probamos que dada cualquier transformación, existe otra transformación (definida

por la matriz inversa), tal que la aplicación sucesiva de ambas no tiene ningún efecto.

Es decir que el conjunto de las transformaciones lineales cumple las propiedades que definen un

grupo. Este grupo se denomina grupo general lineal tridimensional real y en los textos de física se

denota como GL(3,R).

Cualquier subconjunto de transformaciones del espacio que cumpla las tres condiciones de arriba

también es un grupo en sí mismo y un subgrupo del grupo general lineal tridimensional real.

Nuestra intuición es que las transformaciones que llamamos rotaciones deben encontrarse dentro

del grupo SL(2,R), es decir deben ser transformaciones lineales que se realizan multiplicando por

una matriz. Para investigar esta cuestión, debemos definir con más precisión a qué llamamos una

rotación. Utilizaremos las siguientes propiedades que todas las rotaciones cumplen:

Seleccionamos un eje de rotación que pasa por el origen, que podemos representar con un

vector unitario ň que apunta en la dirección del eje.

Al realizar la rotación, el extremo de cada uno de los vectores~r del espacio se desplaza

siguiendo un círculo que está en el plano perpendicular a ň a lo largo de un cierto ángulo de

rotación θ .

Es evidente entonces que cada rotación deja invariante a su vector ň, y que por otro lado la longitud

de cualquier vector~r no cambia bajo una rotación cualquiera. Esto nos permitirá estudiar en lo

que sigue las condiciones que debe cumplir una matriz para representar una rotación.
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Figura 7.2.2: Rotación: una rotación está definida por un eje cuya dirección está dada por un versor ň, y

un ángulo de rotación θ . Un vector cualquiera gira en torno al eje sin cambiar su módulo. Los

versores ň, ň× ř y ň× (ň× ň) forman un sistema ortogonal.

Nota:

La teoría de grupos fue fundada por el matemático francés Évariste Galois, quien la

escribió apresuradamente durante la noche previa a un duelo que le causó la muerte,

con menos de 21 años. Galois fue un matemático brillante y un activista político, que

fue expulsado de la École Normale por sus ideas republicanas. Se cree que la causa

del duelo fue su amor por una mujer.

7.2.1 Transformaciones ortonogonales

Concentrémonos en las transformaciones que dejan invariante el módulo de los vectores. Sabemos

que las rotaciones deben cumplir esta propiedad, por lo que se trata de un buen punto de partida

para la discusión. Comencemos definiendo

~r′ = R ·~r

e intentemos elucidar qué propiedad debe cumplir R para que se verifique que |~r′|= |~r|. Dado que

el módulo de un vector satisface |~r|2 =~r ·~r, podemos re-expresar la condición de invarianza como

~r′ ·~r′ =~r ·~r. Para poder escribir esto en términos de matrices, recordemos que los vectores son

matrices columna, con lo que escribiendo el producto escalar en forma matricial tenemos

~r′t ·~r′ =~rt ·~r

Si ahora usamos que~r′ = R ·~r podemos reescribir el lado izquierdo de esta igualdad según

~r′t ·~r′ = (R ·~r)t · (R ·~r) =~rt · (Rt ·R) ·~r
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Con lo cual, para que se cumpla la condición de invarianza necesitamos que~rt · (Rt ·R) ·~r =~rt ·~r,

es decir que Rt ·R no debe tener ningún efecto. Esto implica inmediatamente que

Rt ·R = I

Las matrices que cumplan esta condición dejarán el módulo de cualquier vector invariante, y

viceversa, cualquier matriz que deje el módulo de un vector invariante debe cumplirla. Dado que las

rotaciones dejan invariante el módulo de cualquier vector, sabemos que deben estar representadas

por matrices de este tipo.

La condición de arriba puede reescribirse como Rt = R−1, lo que quiere decir que nuestra matriz R

es lo que se conoce como una matriz ortogonal. El conjunto de todas las matrices ortogonales

tridimensionales se denota O(3). Podemos probar que se trata de un grupo, ya que cumple las

tres propiedades antes enunciadas, a saber

1. Dadas dos matrices ortogonales R1 ∈O(3) y R2 ∈O(3), se cumple que la composición también

es ortogonal R2 ·R1 ∈ O(3). En efecto, si escribimos

(R2 ·R1)
t · (R2 ·R1) = Rt

1 · (Rt
2 ·R2︸ ︷︷ ︸

I

) ·R1 = Rt
1 ·R1 = I

con lo que hemos probado que R2 ·R1 también es ortogonal, verificando la propiedad de

clausura.

2. La identidad es trivialmente una matriz ortogonal I ∈ O(3)

It · I = I · I = I

Es decir que O(3) contiene una transformación identidad.

3. Dada una matriz ortogonal R ∈ O(3), se cumple que su inversa también lo es R−1 ∈ O(3).

Para verlo, escribimos

(R−1)t ·R−1 = (Rt)t ·Rt = R ·Rt = I

con lo que probamos que O(3) contiene a la inversa de todas sus transformaciones.

Por lo tanto el conjunto de todas las matrices ortogonales O(3) es un grupo, que se denomina

grupo ortogonal.

Con lo que hemos discutido hasta este punto, hemos demostrado que las rotaciones deben

ser transformaciones ortogonales. La pregunta que podemos hacernos ahora es si todas las

transformaciones ortogonales son rotaciones.

Utilizando la propiedad definitoria de las matrices ortogonales, podemos escribir

Det(Rt ·R) = Det I = 1

Usando que el determinante de un producto de matrices es el producto de los determinantes de

cada factor, y que el determinante de una matriz es igual al de su transpuesta, tenemos que

Det(Rt ·R) = DetRt DetR = (DetR)2
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Por lo que se debe cumplir que (DetR)2 = 1 o en otras palabras

DetR =±1

Por lo tanto, el conjunto de las matrices ortogonales se separa en dos conjuntos disjuntos, aquél que

contiene a las matrices con DetR = 1, que se conocen como transformaciones propias o especiales,

y el que contiene a las matrices que tienen DetR = −1, que se denominan transformaciones

impropias. Se puede probar que el conjunto de las matrices ortogonales propias o especiales

forma un grupo, que se denota como SO(3).

Ejercicio:

Probar que las transformaciones ortogonales propias o especiales forman un grupo,

es decir que verifican que

1. Dadas dos transformaciones ortogonales propias o especiales, su producto tam-

bién lo es

2. La identidad es una matriz ortogonal propia o especial.

3. Dada una matriz ortogonal propia o especial, su inversa también lo es.

Ejercicio:

Probar que las transformaciones ortogonales impropias no forman un grupo, porque

no se cumple la primera de las tres propiedades enumeradas en el ejercicio anterior.

Una particularidad de esta división de O(3) en dos subconjuntos, es que no podemos movernos

continuamente de un sector al otro. En efecto, el determinante de una matriz R cualquiera es una

suma de productos de los elementos de matriz, es decir un polinomio que tiene como variables

las entradas de la matriz. Todo polinomio es una función continua de sus variables, que cambia

suavemente al modificarlas. Por esta razón, no es posible deformar suavemente los elementos

de matriz de R para provocar el necesario salto discreto que nos llevaría de una matriz propia

DetR = 1 a una impropia DetR =−1.

Una consecuencia inmediata de lo anterior es que las rotaciones son transformaciones propias o

especiales. Esto sucede porque, como comentamos más arriba, cualquier rotación está definida

con un eje ň y un ángulo de rotación θ . En particular, la rotación de ángulo nulo corresponde a

la transformación identidad. Dado que el ángulo de rotación se puede deformar continuamente

llevándolo desde cualquier valor finito hasta cero, cualquier rotación está continuamente conectada

con la identidad. Como la identidad es una transformación propia, esto implica que cualquier

rotación lo es.

Vamos a estudiar las transformaciones impropias. Un ejemplo de transformación impropia es la

reflexión a lo largo del eje x, en la cual reemplazamos el vector~r = (x,y,z) por un nuevo vector
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~r′ = (x′,y′,z′) = (−x,y,z). Esta transformación se conoce como transformación de paridad en x, y

se representa según

~r′ = Px ·~r

Recordando que los vectores son matrices columna, tenemos que
x′

y′

z′

= Px ·


x

y

z


Por lo que vemos que Px corresponde a la matriz

−x

y

z

=


−1 0 0

0 1 0

0 0 1


︸ ︷︷ ︸

Px

·


x

y

z



Es evidente de aquí que se cumple DetPx =−1 por lo que Px es una transformación impropia, como

habíamos adelantado. Por otro lado, es fácil verificar que se trata en efecto de una transformación

ortogonal, según

Pt
x ·Px = P2

x =


−1 0 0

0 1 0

0 0 1

 ·


−1 0 0

0 1 0

0 0 1

= I

Podemos definir paridades en los otros ejes: Py representa la reflexión a lo largo del eje y, y Pz la

reflexión a lo largo del eje z. Estarán dadas por las matrices

Py =


1 0 0

0 −1 0

0 0 1

 Pz =


1 0 0

0 1 0

0 0 −1


Nótese que cualquier producto binario Px ·Py o Py ·Pz o Pz ·Pz (y sus permutaciones) tendrá determi-

nante 1, por lo que será una transformación propia. Por otro lado el producto triple Px ·Py ·Pz =−I

tiene determinante −1 y representa la transformación impropia.

Una transformación impropia cualquiera, es decir una que cumpla DetR =−1, se puede escribir en

términos de una transformación propia R′ con DetR′ = 1 y la transformación de paridad Px según

R = Px ·R′. Para demostrar esto, aprovechamos el hecho de que P2
x = I para escribir

DetR = Det(Px ·Px ·R) = Det(Px)Det(Px ·R) =−Det(Px ·R)

Dado que DetR =−1 tenemos de la ecuación de arriba que Det(Px ·R) = 1. Por lo tanto si definimos

R′ = Px ·R podemos escribir

R = Px ·R′
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donde hemos aprovechado de nuevo el hecho de que P2
x = I. Es decir que cualquier transformación

impropia se puede escribir como la paridad en x actuando sobre una transformación propia.

Este último resultado implica que para estudiar el grupo de matrices ortogonales O(3) podemos

concentrarnos en el grupo de transformaciones propias o especiales SO(3).

Nota:

Las transformaciones de paridad invierten izquierda y derecha. Eso es fácil de entender

si contemplamos nuestras manos: la mano derecha es lo que se obtiene a partir de la

mano izquierda si cambiamos el signo del eje que va a lo largo del pulgar.

Una pregunta que podemos hacernos es si la naturaleza es invariante de paridad. En

otras palabras ¿qué sucede si realizamos dos experimentos idénticos, pero que son

imágenes especulares el uno del otro? ¿obtendremos resultados idénticos, que son

también imágenes reflejadas? Hoy sabemos que eso no sucede para las interacciones

nucleares débiles. En otras palabras, la paridad no es una simetría de la naturaleza,

que puede distinguir izquierda y derecha. Se dice que la simetría de paridad está

explícitamente rota.

En otro contexto, tanto la ecuación de Schrœdinger para los electrones como las ecua-

ciones de Maxwell para los campos electromagnéticos son invariantes de paridad. Esto

implica en particular que toda la química, que obedece a las mencionadas ecuaciones,

no distingue izquierda y derecha. Aquéllas moléculas que son diferentes de su imagen

en un espejo deben producirse en ambas versiones (o enantiómeros) en cantidades

iguales. Sin embargo, las reacciones químicas que originaron los primeros procesos

biológicos se iniciaron, por azar, en moléculas que tenían alguna lateralidad preferida.

Podrían haberse iniciado con igual probabilidad en moléculas del tipo reflejado, pero

simplemente no fue así. Eso hace que la biología, que evolucionó a partir de ese

acontecimiento contingente, distinga izquierda y derecha. Esto corresponde a una

simetría de paridad espontáneamente rota.

El cuerpo humano transforma nuestros alimentos en D-glucosa o dextrosa, uno de los

enantiómeros de la glucosa. El otro enantiómero, imagen en un espejo de la dextrosa, no

tiene ningún valor nutricional. Es decir que al pasar “A través del espejo” Alicia hubiera

encontrado, con gran probabilidad, la inanición y la muerte. Eso sucedió precisamente

al protagonista del relato “Error técnico”, de Arthur C. Clarke.

7.2.2 Teorema de Euler

Hasta ahora, hemos probado que toda rotación es un elemento de O(3), pero que no todo elemento

de O(3) es una rotación, dado que ese conjunto también contiene a las transformaciones impropias,

que no están continuamente conectadas con la identidad. Ahora bien, si nos limitamos a SO(3),

compuesto por las matrices ortogonales propias o especiales ¿es correcto decir que todas ellas

son rotaciones?
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De acuerdo a nuestra definición de más arriba, además de no cambiar el módulo de cualquier

vector, una rotación deja invariante la dirección del eje alrededor del cual estamos rotando. Es

decir que para cualquier rotación R debe existir un vector ň tal que

R · ň = ň

Vamos a probar que tal vector existe para todas las matrices de SO(3). Tenemos que una matriz

ortogonal cualquiera cumple la propiedad

(R− I) ·Rt = I −Rt

Tomando el determinante a ambos lados, y usando que el determinante de un producto es el

producto de los determinantes y que el determinante de una matriz es igual al de su transpuesta,

tenemos que para cualquier matriz especial

Det (R− I) = Det
(
I −Rt)

Usando ahora que Det (I −Rt) = Det ((I −R)t) = Det (I −R) podemos escribir

Det (R− I) =−Det (R− I)

Hemos usado aquí que el determinante de una matriz es (−1)d veces el determinante de su

opuesta, donde d es la dimensión de la matriz, por lo que en nuestro caso tenemos d = 3. Esto

implica que

Det (R− I) = 0

En otras palabras la matriz R− I es singular, por lo que debe existir un vector ň que cumpla

(R− I) · ň = 0

con lo que hemos demostrado que para cualquier matriz ortogonal propia existe un vector invariante

R · ň = ň.

Con esto, hemos demostrado que cualquier transformación de SO(3) deja invariante el módulo de

todos los vectores, y tiene un vector invariante. En otras palabras, toda matriz de SO(3) es una

rotación.

La pregunta que podemos hacernos ahora es ¿se puede escribir la matriz que representa una dada

rotación en términos del eje de rotación ň y del ángulo de rotación θ? Para responderla, necesitamos

un sistema de ejes ortogonales en el que descomponer nuestros vectores. Notando que para

cualquier vector~r se cumple que ň es perpendicular a ň×~r y que ambos son perpendiculares a

ň× (ň×~r), podemos construir un sistema de ejes perpendiculares en la dirección de esos tres

vectores. Con esto, podemos dibujar el diagrama de la figura 7.2.2.

En el dibujo vemos varios vectores que tienen el mismo módulo, a saber |~r⊥|= |~r′⊥|= |ň× ř|r =

|ň× (ň× ř)|r. Por otro lado, estos vectores son todos perpendiculares a ň. Esto implica que es
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correcto dibujarlos en el mismo círculo. Si descomponemos entonces el vector transformado~r′ en

nuestros tres ejes, según

~r′ = α ň+β (ň× ř)+ γ ň× (ň× ř)︸ ︷︷ ︸
~r′⊥

en términos de coeficientes α, β y γ, vemos que podemos leer la forma de estos coeficientes

directamente del dibujo, según

α =~r · ň =~r′ · ň β = sinθ γ =−cosθ

Con esto, podemos escribir explícitamente

~r′ = (~r · ň) ň+ sinθ ň×~r− cosθ ň× (ň×~r)

Ahora usamos la identidad vectorial ~A× (~B×~C) = ~C(~A ·~B)−~B(~A ·~C) que nos permite reescribir el

último término en esta fórmula para obtener

~r′ = (~r · ň) ň+ sinθ ň×~r+ cosθ (~r− ň(ň ·~r))

Si llamamos eje z a la dirección del versor ň, tenemos que ň = ǩ. Escribiendo~r = x ǐ+ y ǰ+ z ǩ nos

queda

~r′ = z ǩ+(cosθ x+ sinθ y)ǐ+(−sinθ x+ cosθ y) ǰ = Rz ·~r

lo que puede ser expresado matricialmente como

~r′ =


cosθ x+ sinθ y

−sinθ x+ cosθ y

z

= Rz ·


x

y

z


Esto nos permite leer la matriz que representa la rotación de ángulo θ alrededor del eje z en la

forma

Rz =


cosθ sinθ 0

−sinθ cosθ 0

0 0 1


Es fácil probar que DetRz = cos2 θ + sin2

θ = 1 y también que Rt
z ·Rz = I, confirmando que esta

rotación es una matriz de SO(3).

Ejercicio:

Pruebe que para rotaciones alrededor del eje x y del eje y las matrices son Rx y Ry

respectivamente, dadas por

Rx =


1 0 0

0 cosθ sinθ

0 −sinθ cosθ

 Ry =


cosθ 0 −sinθ

0 1 0

sinθ 0 cosθ


Verifique que en ambos casos las matrices son ortogonales y su determinante vale 1.



98 Capítulo 7. Cuerpo rígido I: Rotaciones

Ejercicio:

Demuestre que la matriz Rň definida según

Rň =


cosθ +n2

x(1− cosθ) nx ny(1− cosθ)+nz sinθ nx nz(1− cosθ)−ny sinθ

nx ny(1− cosθ)−nz sinθ cosθ +n2
y(1− cosθ) ny nz(1− cosθ)+nx sinθ

nx nz(1− cosθ)+ny sinθ ny nz(1− cosθ)−nx sinθ cosθ +n2
z (1− cosθ)


representa la rotación en ángulo θ alrededor del eje ň dada por

~r′ = (~r · ň) ň+ sinθ ň×~r+ cosθ (~r− ň(ň ·~r)) = Rň ·~r

y verifique que DetRň = 1 y que Rt
ň ·Rň = I.

Sin embargo, la forma general de una rotación de eje ň que hemos presentado en el ejercicio

anterior no es la única manera de representar una rotación cualquiera. Una forma alternativa que

resulta muy útil para nuestros fines es la que se obtiene según la siguiente construcción:

1. Primero se realiza una rotación en un ángulo ϑ alrededor del eje z. Con esto, los ejes x,y,z

se mueven, yendo a parar a un nuevo conjunto de ejes x′,y′,z, Nótese que, como se trató de

una rotación alrededor del eje z, este quedó inalterado.

2. Luego se rota un ángulo ϕ alrededor del eje x′ resultante de la rotación anterior, obteniendo

un nuevo conjunto de ejes x′,y′′,z′′

3. Finalmente se rota un ángulo ψ alrededor del eje z′′ resultante de ambas rotaciones.

Esto implica que hemos descompuesto la rotación R en términos de tres rotaciones elementales

alrededor de z, de x′, y de z′′. En términos matriciales

R = Rz′′ ·Rx′ ·Rz

Usando la forma explícita de las rotaciones alrededor de cada eje que escribimos más arriba,

tenemos que

R =


cosψ sinψ 0

−sinψ cosψ 0

0 0 1

 .


1 0 0

0 cosϕ sinϕ

0 −sinϕ cosϕ

 .


cosϑ sinϑ 0

−sinϑ cosϑ 0

0 0 1


Es fácil convencerse que mediante este proceso se puede descomponer cualquier rotación. Los

ángulos ϑ ,ϕ,ψ se conocen como los ángulos de Euler de la rotación.

Nota:

Los ángulos de Euler resultan muy útiles en navegación marítima y aérea, ya que

permiten describir la posición de un vehículo respecto del giróscopo de a bordo cuya

orientación se mantiene fija.

Como se puede ver en la figura 7.2.4, el ángulo ϑ representa la dirección, entendida

como hacia adónde apunta el vehículo en el mapa, el ángulo ϕ especifica el cabeceo,
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x x’, x’’

x’’’
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z, z’

z’’, z’’’

ϑ

φ

ψ

Figura 7.2.3: Ángulos de Euler: una rotación de ángulo ϑ en torno al eje z transforma el sistema de coorde-

nadas x,y,z en el nuevo sistema x′,y′,z′. A partir de éste, rotamos alrededor del eje x′ un ángulo

ϕ para ir al nuevo sistema x′′,y′′,z′′. Finalmente, una rotación de ángulo ψ en torno al eje z′′

nos lleva al sistema de coordenadas rotado final x′′′,y′′′,z′′′.

es decir si el vehículo se encuentra subiendo o bajando, y finalmente el ángulo ψ

corresponde a la guiñada, que se refiere a su inclinación lateral respecto de la línea

del horizonte.

7.2.3 Rotaciones infinitesimales

Dijimos más arriba que toda rotación está continuamente conectada a la identidad, es decir que

podemos acercarla arbitrariamente a la misma tomando el ángulo de rotación cada vez más

pequeño. Imaginemos entonces una rotación con un ángulo muy pequeño alrededor de un eje ň

cualquiera. La podemos escribir como una matriz que está infinitesimalmente cerca de la identidad,

en la forma

R = I + ε tň

donde tň es una matriz a determinar, y ε es un número muy pequeño que nos asegura que la

desviación de la identidad es infinitesimal. Entonces podemos escribir su determinante en potencias

de los elementos de la matriz ε tň, según

DetR = 1+ εTr tň +O(ε2)

Ejercicio:

Pruebe la fórmula de arriba escribiendo explícitamente la matriz y calculando su deter-

minante, tirando cuadrados de ε.
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ϑ

φ

ψ

Dirección Cabeceo Guiñada

Figura 7.2.4: Ángulos de Euler en aeronáutica. El primer ángulo de Euler ϑ especifica la dirección de

navegación, el segundo ϕ nos dice si la aeronave sube o baja, mientras que el tercero ψ nos

habla de la inclinación de sus alas.

Por lo tanto la condición de que la matriz sea especial DetR = 1 implica para que matriz infinitesimal

debe cumplir Tr tň = 0. En otras palabras, las matrices especiales cercanas a la identidad difieren

de la ella en una matriz de traza nula.

Por otro lado, sabemos que las rotaciones son matrices ortogonales, es decir que cumplen que

Rt ·R = I. Para nuestra rotación cercana a la identidad esto implica

(I + ε tň)t · (I + ε tň) = I

Escribiendo (I + ε tň)t = I + ε tt
ň y expandiendo la última expresión tenemos

(I + ε tt
ň) · (I + ε tň) = I + ε

(
tt
ň + tň

)
+O(ε2) = I

Por lo tanto la condición Rt ·R = I implica que tt
ň + tň = 0, o en otras palabras

tt
ň =−tň

Es decir que tň es una matriz antisimétrica. Las matrices ortogonales cercanas a la identidad

difieren de ella en una matriz antisimétrica.

Una matriz antisimétrica general se puede escribir como

tň =


0 −γ v

γ 0 −α

−β α 0

= α


0 0 0

0 0 −1

0 1 0


︸ ︷︷ ︸

tx

+β


0 0 1

0 0 0

−1 0 0


︸ ︷︷ ︸

ty

+γ


0 −1 0

1 0 0

0 0 0


︸ ︷︷ ︸

tz

En términos de coeficientes arbitrarios α,β ,γ y las matrices ta con a ∈ {x,y,z}, que se denominan

generadores del grupo de rotaciones. Por lo tanto tenemos que

R = I +α tx +β ty + γ tz
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Esta propiedad se resume diciendo que el grupo de rotaciones es un grupo de Lie, es decir un

grupo que contiene transformaciones infinitesimales arbitrariamente cercanas a la identidad que

se pueden escribir en términos de un conjunto de generadores.

Ejercicio: reglas de conmutación

Probar, escribiendo explícitamente las matrices y haciendo el cálculo, que se cumplen

las reglas de conmutación

[tx, ty] = tx · ty − ty · tx = tz

[ty, tz] = ty · tz − tz · ty = tx

[tz, tx] = tz · tx − tx · tz = ty

Las reglas de conmutación de este ejercicio se pueden resumir en la expresión

[ta, tb] = εabc tc

donde εabc es el símbolo de Levi-Civita completamente antisimétrico, que vale εxyz = 1 y los demás

se obtienen intercambiando los índices y multiplicando por −1 en cada intercambio. La expresión

del conmutador se conoce como el álgebra de Lie del grupo de rotaciones. Se puede verificar que

las componentes de cada uno de los generadores cumplen

(ta)bc =−εabc

Podríamos preguntarnos cómo se relaciona todo esto con nuestra expresión general para las

rotaciones con un ángulo θ alrededor de un eje ň que habíamos escrito más arriba, es decir

~r′ = (~r · ň) ň+ sinθ ň×~r+ cosθ (~r− ň(ň.~r))

Si imaginamos una rotación infinitesimal con un ángulo ε , podemos desarrollar sin(ε) = ε y cos(ε) =

1+O(ε2), con lo que si ahora reemplazamos en la ecuación anterior, obtenemos

~r′ =~r+ ε ň×~r

o bien, escribiendo esta expresión en componentes,

r′a = ra − ε nbεbacrc = ra + ε nb(tb)acrc = (δac + ε nb(tb)ac)rc

Lo que en términos matriciales se puede resumir como

~r′ = (I + ε ň ·~t)~r = (I + ε tň) ·~r

donde ~t = (tx, ty, tz) es un vector cuyas componentes son matrices (esto es simplemente una

notación para no tener que escribir índices). Si ahora definimos~ε = ňε obtenemos la fórmula

d~r =~ε ×~r = (~ε ·~t) ·~r = tň ·~r
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La primera igualdad toma una forma conocida cuando escribimos dθ = ε y dividimos por dt

~̇r = ~ω ×~r

Vamos a aplicar las expresiones obtenidas al cálculo de la aceleración de Coriolis en un sistema

de coordenadas rotante. Para esto, es natural trabajar usando el punto de vista pasivo de las

rotaciones, donde lo que está cambiando no es el vector que las coordenadas representan, sino el

sistema de coordenadas en el cual lo descomponemos.

Supongamos que las componentes de un vector cualquiera ~G en un sistema de coordenadas fijo

respecto de las estrellas lejanas se llaman (~G)S, mientras que sus componentes en un sistema de

coordenadas que rota solidario con la Tierra son (~G)T . El origen de ambos sistemas está en el

centro de la Tierra, y suponemos que inicialmente los ejes de ambos sistemas están alineados.

Tenemos entonces que, en el instante inicial

(~G)S = (~G)T

Al dejar pasar un pequeño intervalo de tiempo dt, el sistema solidario con la Tierra ha rotado un

ángulo −dΘ respecto del sistema alineado con las estrellas lejanas, y además el vector ~G ha

cambiado una cantidad d~G debido a su movimiento propio, por lo que en lugar de la igualdad de

más arriba tendremos que

(~G+d~G)S = (I + ~dΘ ·~t) · (~G+d~G)T

De donde podemos escribir

(~G)S +d(~G)S = (~G)T +d(~G)T +( ~dΘ ·~t) · (~G)T + · · ·

donde hemos escrito (d~G)T = d~(G)T descartando términos de orden cuadrático en las variaciones.

Usando una de las identidades de más arriba, podemos poner

d(~G)S = d(~G)T + ~dΘ× (~G)T

donde el primer término representa el cambio intrínseco en las componentes del vector, mientras

que el segundo se refiere al cambio debido a la rotación del sistema de coordenadas fijo a la Tierra.

Dividiendo por dt obtenemos

d(~G)S

dt
=

d(~G)T

dt
+~Ω× (~G)T

Nótese que d(~G)T/dt 6= (d~G/dt)T debido a la rotación propia del sistema solidario con la Tierra.

Aplicando este resultado al vector posición ~G =~r, tenemos

(~v)S =
d(~r)S

dt
=

d(~r)T

dt
+~Ω× (~r)T

Nótese que d(~r)T/dt 6= (~v)T . Si ahora pensamos que ~G =~v podemos escribir

(~a)S =
d(~v)S

dt
=

d
dt

(
d(~r)T

dt
+~Ω× (~r)T

)
S
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donde hemos puesto un subíndice S para recordar que la magnitud entre paréntesis corresponde

a las componentes (~v)S del vector velocidad en el sistema en reposo respecto de las estrellas

lejanas. Aplicando nuestra fórmula para la derivada temporal

(~a)S =
d
dt

(
d(~r)T

dt
+~Ω× (~r)T

)
T
+~Ω×

(
d(~r)T

dt
+~Ω× (~r)T

)
T

y reordenando obtenemos

(~a)S =
d2(~r)T

dt2 +2~Ω× d(~r)T

dt
+~Ω×

(
~Ω× (~r)T

)
Aquí el primer término es la aceleración en el sistema solidario con la Tierra, el segundo término

nos da la aceleración de Coriolis, mientras que el tercero corresponde a la aceleración centrípeta.

7.3 Resumen

En esta clase introdujimos la idea de grupo, comenzando con el grupo SL(3,R) de transforma-

ciones generales lineales en el espacio. Identificamos su subgrupo ortogonal O(3) dado por las

transformaciones que preservan el módulo de los vectores. Vimos que en términos de matrices,

corresponden a aquéllas cuya transpuesta es a la vez su inversa. Identificamos el subgrupo de

matrices especiales SO(3) que tienen determinante unidad, y demostramos que corresponden a

las rotaciones.

Aprendimos también a descomponer una rotación en términos de rotaciones sucesivas alrededor

de diferentes ejes, con lo que pudimos definir los ángulos de Euler.

Finalmente, estudiamos las características de las rotaciones infinitesimales, y las utilizamos para

describir la aceleración de Coriolis.





8. Cuerpo rígido II: Cinemática e inercia

8.1 Objetivos

Christiaan Huygens

En esta clase definiremos la noción de cuerpo rígido,

como un sistema de partículas cuyas distancias relativas

están fijas. Dejaremos para más adelante la discusión

sobre cuáles son las fuerzas que aseguran tal rigidez, y

sobre qué sucede cuando estas fuerzas se relajan.

Comenzaremos con la cinemática del cuerpo rígido, iden-

tificando los elementos necesarios para poder más ade-

lante describir su evolución temporal.

Luego analizaremos la manera en la que la inercia se

manifiesta en estos sistemas, construyendo otro de los

ingredientes indispensables para escribir sus ecuaciones

de movimiento.

8.2 Cinemática del cuerpo rígido

Supongamos que tenemos un sistema de N partículas, El conjunto formado por las tres componen-

tes de cada uno de los vectores posición~rn constituye naturalmente un sistema de 3N coordenadas

generalizadas. A continuación vamos a construir otro sistema de coordenadas generalizadas para

describir su movimiento, que nos resultará útil para definir un cuerpo rígido.
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ϑ

φ

ψ

l1

l2

l3

ln1

ln2

ln3

r⃗1  

Figura 8.2.1: Coordenadas para la descripción de un cuerpo rígido. Usamos la posición de una de las

partículas, la orientación del triángulo formado por tres partículas respecto de una orientación

de referencia, y la distancia de cualquier otra partícula a los vértices del triángulo.

Tomamos tres partículas cualesquiera no colineales n= 1,2,3. Estas partículas forman por supuesto

un triángulo. La posición de las tres partículas estará completamente determinada por la forma, la

posición y la orientación de este triángulo, ver figura 8.2.1.

La forma del triángulo está dada por las longitudes de cada uno de sus lados l1, l2 y l3.

Podemos escribir

l1 = |~r1 −~r2| l2 = |~r2 −~r3| l3 = |~r3 −~r1|

La posición del triángulo queda determinada por la posición de uno de sus vértices, digamos

por ejemplo~r1.

La orientación del triángulo se fija en términos de la rotación necesaria para llevar al triángulo

a su posición actual comenzando desde una orientación de referencia prefijada (por ejemplo,

la orientación de referencia podría ser el triángulo apoyado en el primer cuadrante del plano

xy con su lado más largo alineado en la dirección de las x). Esta rotación está definida por

tres ángulos, que podemos identificar con sus ángulos de Euler (ϑ ,ϕ,ψ).

La posición de cualquier otra partícula n > 3 del sistema estará dada por la distancias ln1, ln2, ln3

que la separan de los tres vértices del triángulo.

ln1 = |~r1 −~rn| ln2 = |~r2 −~rn| ln3 = |~r3 −~rn|

Con esto, nuestro conjunto de coordenadas generalizadas {qi} con i ∈ {1,2, . . . ,3N} está dado

por {qi}= {~r1, ϑ ,ϕ,ψ, l1, l2, l3, ln1, ln2, ln3} para n ∈ {4, · · · ,N}. Son tres componentes de la posición
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de un vértice, los tres ángulos de Euler que fijan la rotación, y 3+ 3(N − 3) = 3N − 6 distancias.

Comprobamos que es un total de 3N coordenadas, que parametrizan el espacio de configuración

C = R3N .

Un cuerpo rígido es un sistema de partículas tal que la distancia entre cualquier par de partículas es

constante. Por lo tanto, las 3N−6 distancias mencionadas más arriba no cambiarán con el tiempo, y

podemos dejarlas fijas en nuestra descripción del sistema. Esta truncación puede involucrar alguna

sutileza, ya que las coordenadas generalizadas que omitimos también tienen sus ecuaciones de

movimiento, y deberíamos asegurarnos que tales ecuaciones se están cumpliendo, es decir que

se trate de una truncación consistente. Postpondremos esa discusión para más adelante.

Como conclusión, un cuerpo rígido tiene seis grados de libertad, dados por la posición de una

de sus partículas~r1 ∈ R3 y los tres ángulos de Euler θ ,φ ,ψ que definen la rotación R ∈ SO(3) que

lleva de un sistema de coordenadas inercial externo a un sistema de coordenadas unido al cuerpo.

Es decir que su espacio de configuración está dado por C = R3 ×SO(3).

Una partícula cualquiera estará en una posición dada por

~rn =~r1 +(~rn −~r1)︸ ︷︷ ︸
~r1n

=~r1 +~r1n

donde~r1n es el vector distancia entre la partícula n-ésima y la partícula que usamos para describir

la posición del cuerpo rígido. Ahora bien, estas variables cambiarán al transcurrir un instante de

tiempo dt, de modo que

d~rn = d~r1 +d~r1n

Dado que por definición las distancias entre cualquier par de partículas de un cuerpo rígido no

cambian, entonces |~r1n| no puede cambiar, por lo que d~r1n debe corresponder a una rotación.

Usando lo que aprendimos en la clase anterior podemos entonces escribir

d~rn = d~r1 +dθ ň×~r1n

donde ň es un eje de rotación que pasa por ~r1. Con esto podemos escribir la velocidad de la

partícula n-ésima como

~̇rn =~̇r1 +~ω ×~r1n

donde hemos definido la velocidad angular en torno a~r1 como ~ω = ňdθ/dt. En esta expresión,

el primer término representa la traslación de una de las partículas del cuerpo rígido respecto de

origen del sistema de coordenadas, y el segundo término tiene en cuenta la rotación del cuerpo

en torno a esa partícula.
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8.3 Momento de inercia

Supongamos que queremos escribir el momento angular del cuerpo rígido. Para esto tenemos

que escribir

~̀= mn~rn ×~̇rn

donde n es el índice que corre entre todas las partículas del cuerpo, y estamos sumando sobre él.

Por el momento, pondremos el origen de nuestro sistema de coordenadas en la partícula 1, de

modo que~r1 = 0. Si se trata o no de un sistema de coordenadas inercial no es importante para lo

que discutiremos, por lo que pospondremos esa discusión. Podemos entonces usar la expresión

para la velocidad de más arriba con ~̇r1 = 0 y obtener

~̀= mn~rn × (~ω ×~rn) = mn(~ω r2
n −~rn(~ω ·~rn))

Donde en la segunda igualdad usamos la fórmula para un producto vectorial triple ~A× (~B×~C) =

~B(~A ·~C)−~C(~A ·~B). En componentes esta ecuación se puede escribir como

`a = mn(ωa r2
n − rn

a ωb rn
b)

Donde los índices a,b corren sobre las direcciones cartesianas {x,y,z}, y en el segundo término

hay una suma sobre b. Para poder sacar factor común ωb insertamos una δab en el primer término,

y tenemos

`a = mn(δabωb r2
n − rn

aωbrn
b) = mn(δab r2

n − rn
arn

b)︸ ︷︷ ︸
Iab

ωb = Iab ωb

Hemos definido aquí las nuevas magnitudes Iab, que forman una matriz I llamadamatriz momento

de inercia. Esto nos permite escribir la relación en la forma matricial

~̀= I ·~ω

o bien explícitamente en componentes

`x = Ixxωx +Ixyωy +Ixzωz

`y = Iyxωx +Iyyωy +Iyzωz

`z = Izxωx +Izyωy +Izzωz

Nótese que la matriz I es una matriz simétrica, de acuerdo a su definición. Ahora bien ¿qué es

exactamente esta matriz?

Ejercicio:

Calcule las componentes de la matriz anterior para una molécula de metano, repre-

sentada como un tetraedro con un átomo de hidrógeno en cada vértice y un átomo de

carbono en el centro. Elija un sistema de ejes que con su origen el centro del tetraedro

y tal que el eje z pase por uno de los vértices ¿Qué sucede si cambia el sistema de

coordenadas?
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Nota:

La película “2001: una odisea espacial” del director Stanley Kubrick está basada en

la novela homónima de Arthur C. Clarke. Una de las escenas icónicas de la película

muestra al astronauta David Bowman trotando alrededor del un pasillo circular que

rodea completamente la nave Discovery. El pasillo gira sobre su eje de modo tal que la

fuerza centrífuga provee de un sustituto para la gravedad.

Luego de que la computadora de la nave Hal-9000, con su célebre ojo único de color

rojo, se volviera loca y asesinara a su compañero Frank Poole, Bowman desaparece en

un portal dimensional que orbita Júpiter. En la novela de Clarke, la narración sucede en

órbita de Saturno, pero Kubrick temía no poder retratar satisfactoriamente los anillos,

por eso la trasladó al otro gigante gaseoso.

En la secuela de la novela “2010: odisea dos”, la nave rusa Leonov llega a Saturno

para rescatar los restos de la Discovery, pero la encuentra girando descontroladamente

alrededor de su centro de masas. El mecanismo que movía el pasillo se atascó, y todo

el momento angular del mismo se transfirió a la nave entera.

Con esto, el autor retrata uno de los problemas de construir mecanismos con piezas

en rotación relativa en el espacio: si por alguna razón el mecanismo falla, el objeto

entero comienza a girar.

8.3.1 Tensor momento de inercia

Aprendimos en los cursos básicos de física que existen magnitudes físicas conocidas como

vectores, un ejemplo de las cuales es el momento angular ~̀. Estos vectores están definidos

con una terna de números ~̀ = (`x, `y, `z) que nos dan sus componentes en un dado sistema de

coordenadas. Además, satisfacen una propiedad fundamental que es su regla de transformación

frente a rotaciones

~̀′ = R ·~̀

lo que se puede escribir en componentes como

`a = Rab`b

Cualquier terna de números que se transforma de esa manera frente a las rotaciones se llama vector

contravariante. Existen también los vectores covariantes que transforman con la matriz transpuesta,

un ejemplo de ellos es el gradiente ~∇ = (∂x,∂y,∂z) que cumple la regla de transformación

∂
′
a = Rba∂b

Ejercicio:

Probar la regla de transformación anterior haciendo actuar el gradiente sobre una

función arbitraria y utilizando la regla de la cadena.



110 Capítulo 8. Cuerpo rígido II: Cinemática e inercia

Uno podría preguntarse entonces ¿cómo se transforman la matriz de 3×3 que llamamos más

arriba momento de inercia? Para investigar esta cuestión, aplicamos una rotación al momento

angular, obteniendo

~̀′ = R ·~̀= R · (I ·~ω)

En el miembro derecho podemos insertar la identidad escrita como I = Rt ·R y nos queda

~̀′ = R ·~̀= R ·I · (Rt ·R) ·~ω = (R ·I ·Rt)︸ ︷︷ ︸
I ′

·R ·~ω︸︷︷︸
~ω ′

Con las definiciones de la última igualdad, podemos escribir la relación entre los vectores rotados,

en términos de una matriz momento de inercia rotada, según

~̀′ = I ′ ·~ω ′

Donde hemos entendido que el momento de inercia transforma de acuerdo a la regla

I ′ = R ·I ·Rt

lo que en componentes se escribe como

I ′
ab = RacIcdRbd = RacRbdIcd

Esta regla de transformación es parecida a la de un vector, salvo que hay dos matrices de rotación

actuando una sobre cada índice de nuestra matriz. Esto define un nuevo tipo de magnitud, cuyas

componentes en un sistema de coordenadas están dadas por una matriz, que llamamos tensor de

dos índices contravariante. El momento de inercia es entonces un ejemplo de tal tipo de tensores.

Existen tensores de más índices contravariantes, definidos en un sistema de coordenadas por

arreglos de números Tabc..., que se transforman frente a rotaciones según la regla

T ′
abc... = RadRbeRc f . . .Tde f ...

Un ejemplo es el tensor de Levi-Civita dado en algún sistema de coordenadas por el símbolo

εabc =±1 con εxyz = 1 y cambiando de signo por cada permutación de índices. Este tensor tiene

la propiedad de ser invariante, es decir que sus componentes en cualquier otro sistema de

coordenadas son las mismas

ε
′
abc = RadRbeRc f εde f = Det(R)εabc = εabc

donde en la segunda igualdad hemos usado la definición del determinante de una matriz, y el

hecho de que las rotaciones tienen determinante unidad.

Ejercicio:

Probar la invarianza del tensor de Levi-Civita, y verificar que si bien es invariante frente

a rotaciones, no lo es frente a paridad.
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Ahora bien, tomemos el producto de las componentes de dos vectores contravariantes cualesquiera

~A y ~B, y construyamos una matriz producto tensorial cuyas componentes son el producto de las

componentes de los vectores

(~A⊗~B)ab = AaBb

Si ahora aplicamos una rotación, tenemos que los elementos de esta matriz se transformarán

según

A′
aB′

b = RacAcRbdBd = RacRbdAcBd

Es decir que el producto tensorial de dos vectores contravariantes forma un tensor de dos índices

contravariante. Ese objeto es útil para reescribir la fórmula para el momento de inercia en la forma

I = mn
(
r2

nI −~rn ⊗~rn
)

donde I en el primer término es la matriz identidad, cuyas componentes son Iab = δab.

Ahora bien, para entender qué relación tiene este tensor momento de inercia con los objetos de

los que hablamos en los cursos elementales de física, escribamos la energía cinética de nuestro

cuerpo rígido en la forma

K =
1
2

mn~̇r2
n =

1
2

mn~̇rn · (~ω ×~rn) =
1
2

mn(~rn ×~̇rn)︸ ︷︷ ︸
~̀

·~ω

donde asumimos que el cuerpo rígido sólo está rotando, y en la última igualdad hicimos una

permutación cíclica reordenando los factores en el producto mixto, para identificar el momento

angular. Si escribimos lo de arriba como un producto de matrices (recordando que los vectores

son matrices columna) entonces tenemos

K =
1
2
~̀t ·~ω =

1
2
(I ·ω)t ·ω =

1
2
~ω t ·I ·~ω

Escribiendo la velocidad angular como ~ω = ω ň, donde ň es la dirección del eje de rotación, nos

queda la expresión

K =
1
2
(ňt ·I · ň)︸ ︷︷ ︸

Iň

ω
2 =

1
2
Iň ω

2

Donde hemos definido elmomento de inercia alrededor de un eje ň según Iň = ňt ·I · ň. Escribiendo

esta expresión en componentes tenemos

Iň = naIabnb = namn
(
r2

nδab − rnarnb
)

nb = mn
(
r2

n − (~rn · ň)2)
donde en la última igualdad usamos δabnanb = ň · ň = 1 y rnana =~rn · ň.

Si ahora identificamos ~rn · ň como la proyección del vector posición en la dirección del eje de

rotación, tenemos un triángulo de lados |~rn|,~rn · ň, y r⊥n donde esta última variable representa la
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r⃗⊥

π/2

Figura 8.3.1: Esquema del teorema de Huygens-Steiner. El momento de inercia en torno a un eje que pasa

por el centro de masas se relaciona con el que corresponde a un eje paralelo cualquiera a

través de la distancia perpendicular r⊥.

distancia perpendicular de la partícula n-ésima al eje de rotación. Usando entonces el teorema de

Pitágoras podemos escribir

Iň = mn
(
r2

n − (~rn · ň)2)= mn(r⊥n )
2

Que no es otra cosa que la definición de momento de inercia alrededor del eje ň que se aprende

en los cursos básicos de física.

La expresión para el tensor momento de inercia en términos de producto tensorial facilita la prueba

del teorema de Huygens-Steiner. En efecto, si tenemos

I = mn
(
r2

nI − rn ⊗ rn
)

Usando que~rn =~rcm+~r′n donde~v es la posición del centro de masas y~r′n la posición de la partícula

n-ésima en el sistema centro de masas, entonces podemos poner

I = mn
(
(~rcm+~r′n)

2I − (~rcm+~r′n)⊗ (~rcm+~r′n)
)

Como se puede ver usando su definición, el símbolo ⊗ funciona de manera distributiva con respecto

a la suma, al igual que una multiplicación normal (después de todo no es sino una multiplicación

componente a componente). Por lo tanto, si expandimos los productos obtenemos

I = mn(r′
2
nI −~r′n ⊗~r′a)+M(r2

cmI −~rcm⊗~rcm)+ · · ·

donde M = ∑
N
n=1 mn es la masa total, y los términos omitidos se anulan usando que en el sistema

centro de masas se verifica que mn~r′n = 0. Con esto nos queda

I = I ′+M(r2
cmI −~rcm⊗~rcm)
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Aquí I ′ es el tensor momento de inercia en un sistema de coordenadas con el origen en el centro

de masas. Si usamos esta expresión en el momento de inercia alrededor de un eje ň según lo

habíamos definido más arriba Iň = ňt ·I · ň, obtenemos

Iň = I ′
ň +Mr2

⊥

con r2
⊥ = r2

cm− (rcm · ň)2. Es decir que hemos demostrado el teorema de Huygens-Steiner.

8.3.2 Ejes principales

En los cursos básicos de física aprendimos que los cuerpos rígidos tienen ejes especiales, elegidos

de acuerdo a alguna intuición geométrica, que llamamos ejes principales. Recordemos que, entre

otras propiedades, estos ejes cumplen que alrededor de ellos el momento angular toma una forma

muy sencilla

~̀= Iň ~ω

Donde Iň es el momento de inercia a lo largo de un eje principal que apunta en la dirección de ň.

Para entender qué son tales ejes principales, empecemos escribiendo la ecuación de autovalores

en la forma

I ·~w = J ~w

donde en el lado izquierdo tenemos una matriz I multiplicada por un vector ~w, mientras que en

el lado derecho tenemos un número J multiplicado por el mismo vector. La solución de esta

ecuación viene dada por un vector ~w que se llama autovector de la matriz I , y por un escalar J

que se llama autovalor de la matriz I . Por supuesto puede haber varias soluciones {Ja,~wa}, por

lo que es más preciso escribir

I ·~wa = Ja~wa

Nótese que aquí en el miembro derecho no estamos sumando sobre a. Podemos reordenar esta

expresión para escribirla en la forma

(I −JaI) ·~wa = 0

donde I es la matriz identidad. Esta es una ecuación lineal homogénea para las tres componentes

de cada solución ~wa, que sólo tendrá una solución no trivial si el determinante se anula

Det(I −JaI) = 0

Este determinante contiene una suma de términos, cada uno de los cuales es un producto de

tres componentes diferentes de la matriz I −JaI. Por lo tanto, será un polinomio cúbico en la

variable Ja. La ecuación cúbica resultante tendrá a lo sumo tres soluciones distintas, es decir que

el índice a tomará tres valores diferentes.
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w⃗1 w⃗2

w⃗ 3

Figura 8.3.2: Ilustración de los ejes principales de un cuerpo rígido. En los cursos básicos de física se los

identifica de modo intuitivo. Aquí aprendemos que se trata de los tres autovectores del tensor

de inercia.

Vamos a probar ahora que las soluciones Ja de esta ecuación son números reales. Para esto,

multiplicamos escalarmente por el vector conjugado ~w∗
b en la ecuación de autovalores, con lo que

la fórmula se escribe

(~w∗
b)

t ·I ·~wa = Ja (~w∗
b)

t ·~wa

En esta expresión, ahora cambiamos a por b y conjugamos el resultado, para obtener

(~wa)
t ·I ∗ ·~w∗

b = J ∗
b (~wa)

t ·~w∗
b

y ahora transponemos

(~w∗
b)

t ·I † ·~wa = J ∗
b (~w∗

b)
t ·~wa

donde hemos usado que la transpuesta del producto es el producto de las transpuestas en orden

inverso. Usando el hecho de que I es una matriz real y simétrica I † = I , esta expresión nos

queda escrita en la forma

(~w∗
b)

t ·I · .~wa = J ∗
b (~w∗

b)
t ·~wa

Restando esta última igualdad de la ecuación con la que comenzamos nuestro cálculo más arriba,

tenemos

0 = (Ja −J ∗
b )(~w

∗
b)

t ·~wa

Si elegimos el caso a = b nos queda (Ja −J ∗
a )(~w

∗
a)

t · ~wa = 0. Nótese que en esta fórmula el

miembro derecho es positivo (~w∗
a)

t .~wa = w∗
axwax +w∗

ayway +w∗
azwaz = |wax|2 + |way|2 + |waz|2 > 0. Por
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lo tanto, si el vector solución ~wa es no nulo, esta ecuación implica que Ja =J ∗
a . En otras palabras

Ja es real.

Con este resultado, podemos volver a la primera ecuación, para verificar que si ~wa es solución con

autovalor Ja, entonces ~w∗
a también lo es. Esto implica que la parte real y la parte imaginaria de ~wa

son soluciones reales del problema de autovalores, con autovalor Ja.

Si en la última ecuación elegimos en cambio a 6= b entonces obtenemos (Ja −Jb)(~wb)
t ·~wa = 0,

de lo que deducimos que

Si los autovalores son diferentes Ja 6= Jb implica (~wb)
t ·~wa = ~wb ·~wa = 0 por lo tanto los

autovectores son ortogonales ~wa ⊥ ~wb

Si los autovalores son iguales Ja = Jb y los vectores ~wa y ~wb son diferentes, siempre se

pueden elegir ~wa y ~wb perpendiculares.

Con esto, hemos demostrado que la ecuación de autovalores tiene como solución tres vectores

reales y mutuamente perpendiculares. Estos vectores se pueden multiplicar por una constante

cualquiera, y seguirán siendo solución. Por lo tanto, podemos normalizarlos para obtener la fórmula

general

~wa ·~wb = δab

Es útil demostrar que estos vectores nos permiten escribir el momento de inercia según la des-

composición

I = Ja(~wa ⊗~wa)

Para probar que esta fórmula es correcta, usamos su expresión en componentes Icd =Ja(~wa)c(~wa)d

y la insertamos en la ecuación de autovalores I ·~wb = Jb~wb, obteniendo

Icd(~wb)d = Ja(~wa)c(~wa)d(~wb)d = Ja(~wa)c ~wa ·~wb = Ja(~wa)c δab = Jb(~wb)c

donde en la penúltima igualdad utilizamos la ortogonalidad de los vectores ~wa. Esto demuestra que,

en efecto, la descomposición que hemos escrito para I cumple la ecuación de autovalores con

soluciones Ja. Nótese que esto implica que el momento de inercia alrededor del eje determinado

por ~wa es Ja, según nuestra definición

I~wa = ~wt
a ·I ·~wa = ~wt

a · (I ·~wa) = ~wt
a · (Ja ~wa) = Ja~wt

a ·~wa = Ja

donde en la penúltima igualdad usamos la ecuación de autovalores, y en la última el hecho de que

los vectores ~wa están normalizados.

Ahora vamos a probar la relación de estos autovalores y autovectores con los ejes principales y

sus momentos de inercia. Para eso, escribimos el momento angular como ~̀= I ·~ω , y suponemos

que la velocidad angular apunta en la dirección de alguno de los autovectores ~ω = ~wa ω. En ese
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caso podemos escribir

~̀= I ·~ω = I · (~wa ω) = I ·~wa ω

y usando en esta expresión la ecuación de autovalores, tenemos

~̀= Ja~wa ω = Iw̌a~ω

Es decir que los ejes determinados por ~wx,~wy,~wz son los ejes principales del cuerpo rígido, en el

sentido que le dimos a esa expresión más arriba. Los autovalores Jx,Jy,Jz se llaman momentos

de inercia principales.

Si elegimos nuestro sistema de coordenadas de manera que sus ejes apunten en las direcciones

de nuestros tres vectores ~wa mutuamente ortogonales, podemos escribir ~ω = ωx~wx +ωy~wy +ωz~wz.

Replicando en cada término el cálculo anterior, obtenemos

~̀= Jxωx~wx +Jyωy~wy +Jzωz~wz

Descomponiendo al momento angular según sus componentes en este sistema de ejes ~̀ =

`x~wx + `y~wy + `z~wz, tenemos que

`x = Jxωx `y = Jyωy `z = Jzωz

Por otro lado, para la energía cinética de rotación podemos escribir

K =
1
2
~ω t ·I ·~ω =

1
2
(
Jxω

2
x +Jyω

2
y +Jzω

2
z
)
=

1
2Jx

`2
x +

1
2Jy

`2
y +

1
2Jz

`2
z

Como vemos, las expresiones en términos de los momentos principales de inercia son mucho más

simples y no incluyen matrices, por lo que serán útiles para escribir las ecuaciones de movimiento

de un cuerpo rígido.

La expresión para el tensor momento de inercia también se simplifica, ya que podemos usar que

en este sistema de coordenadas ~wx = (1,0,0), ~wy = (0,1,0) y ~wz = (0,0,1), para obtener

wx ⊗wx =


1 0 0

0 0 0

0 0 0

 wy ⊗wy =


0 0 0

0 1 0

0 0 0

 wz ⊗wz =


0 0 0

0 0 0

0 0 1


con lo cual

I = Ja(~wa ⊗~wa) =


J1 0 0

0 J2 0

0 0 J3


Hemos demostrado que en el sistema de ejes principales, la matriz momento de inercia es diagonal.
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8.4 Resumen

En esta clase encontramos una descripción para la cinemática del cuerpo rígido, donde los grados

de libertad están dados por la posición del cuerpo, es decir la posición de alguna de sus partículas,

y su orientación, dada por una rotación respecto de alguna orientación de referencia. Con esto,

fuimos capaces de descomponer cualquier el movimiento del cuerpo en términos de una traslación

y una rotación.

Escribiendo el momento angular en función de la velocidad angular asociada a la rotación, pudimos

encontrar una expresión para el momento de inercia que nos permitió identificarlo como un tensor

de dos índices contravariante. Esto nos permitió definir los ejes principales a través de una ecuación

de autovalores.





9. Cuerpo rígido III: Dinámica

9.1 Objetivos

Vladimir Dzhanibekov

En esta clase escribiremos las ecuaciones que determi-

nan el movimiento del cuerpo rígido. Lo haremos primero

según el formalismo newtoniano, para lo cual emplea-

remos el torque para escribir la derivada temporal del

momento angular. Luego utilizaremos el formalismo la-

grangiano, lo que nos permitirá hacer uso de coordena-

das generalizadas.

Nos concentraremos en dos situaciones de interés: el

caso del cuerpo rígido libre sobre el que no actúa ninguna

fuerza externa, y el caso del trompo, es decir un cuerpo

rígido que tiene un punto que se mantiene quieto mientras

se mueve bajo la influencia de la gravedad.

9.2 Dinámica del cuerpo rígido

9.2.1 Ecuaciones de Euler

Con los elementos que estudiamos en las clases anteriores, estamos en condiciones de escribir

las ecuaciones de movimiento del cuerpo rígido. Como aprendimos en los cursos básicos de física,
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estas ecuaciones tienen la forma

d~̀

dt
=~τ

Donde ~τ es el torque total que actúa sobre el sistema. En un sistema de coordenadas inercial S,

las componentes de esta ecuación se leen(
d~̀

dt

)
S

= (~τ)S

Vamos a asumir que este sistema inercial se puede colocar en el centro de masas del cuerpo, lo que

es posible solo si la suma de fuerzas sobre el mismo se anula. Esto resulta en una simplificación

de los cálculos que siguen, que pueden luego generalizarse al caso de un cuerpo acelerado.

Pasando ahora a un sistema de coordenadas no inercial B cuyos ejes están fijos respecto del

cuerpo, debemos adicionar a la derivada temporal la contribución que discutimos unas clases

atrás, originada en la rotación del sistema de coordenadas. En otras palabras, las componentes

del momento angular cumplen(
d~̀

dt

)
B

+(~ω ×~L)B = (~τ)B

Si recordamos que ~̀= I ·~ω entonces(
d(I ·~ω)

dt

)
B
+(~ω × (I ·~ω))B = (~τ)B

Escribiendo esto explícitamente en componentes, tenemos

Iab
dωb

dt
+ εabcωbIcdωd = τa

donde como siempre estamos considerando que hay una suma sobre cualquier índice que se repita

dos veces. Si agregamos una nueva convención notacional, definiendo que no habrá una suma

cuando alguno de los índices del par aparece entre paréntesis, podemos escribir Iab = J(b)δab

en el sistema de ejes principales del cuerpo. En esta expresión no hay suma sobre el índice b.

Con esto la ecuación de movimiento nos queda

J(a)
dωa

dt
+ εabcωbJ(c)ωc = τa

hemos hecho explícitamente algunas de las sumas para eliminar las deltas de Kronecker. Sepa-

rando ahora cada componente

Jx
dωx

dt
+(Jz −Jy)ωyωz = τx

Jy
dωy

dt
+(Jz −Jx)ωxωz = τy

Jz
dωz

dt
+(Jx −Jy)ωxωy = τz

Estas ecuaciones se conocen como ecuaciones de Euler y determinan completamente el movi-

miento de un cuerpo rígido sometido a un torque, en el sistema de coordenadas que está fijo al

cuerpo.
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Dependiendo de la forma en la que el torque dependa de los ángulos, las ecuaciones de Euler

pueden resultar arbitrariamente complicadas de resolver. En la sección que siguen estudiaremos

el caso libre, en el cual se puede encontrar una solución explícita.

9.2.2 Cuerpo rígido libre

Sobre un cuerpo rígido libre el torque externo total se anula ~τ = 0. Por lo tanto, las ecuaciones de

Euler quedan escritas de una manera particularmente sencilla

Jx
dωx

dt
+(Jz −Jy)ωyωz = 0

Jy
dωy

dt
+(Jz −Jx)ωxωz = 0

Jz
dωz

dt
+(Jx −Jy)ωxωy = 0

Como no hay una dependencia en los ángulos, estas ecuaciones son ahora ecuaciones diferen-

ciales de primer orden para las componentes de la velocidad angular. Se trata de ecuaciones

no-lineales, debido a los términos cuadráticos que aparecen en ellas.

Para resolverlas, estudiemos primero sus puntos fijos. Es decir, preguntémonos qué tiene que

suceder para que todas las derivadas se anulen y una velocidad angular constante resuelva las

ecuaciones. Es fácil ver que esto demanda

(Jz −Jy)ωyωz = 0

(Jz −Jx)ωxωz = 0

(Jx −Jy)ωxωy = 0

De aquí podemos ver inmediatamente que

Si los tres momentos principales de inercia son iguales Jx = Jy = Jz, entonces cualquier

valor constante de ωx, ωy y ωz satisface estas ecuaciones. Es decir que la solución para

la velocidad angular es cualquier vector constante ~ω = (ω0
x ,ω

0
y ,ω

0
z ). El cuerpo rígido libre

completamente simétrico gira en torno a cualquier eje con velocidad angular constante.

Si dos de los tres momentos principales de inercia son iguales, digamos Jx = Jy, entonces

la ecuación que contiene la resta no pone restricciones en las componentes de la velocidad

angular, en este caso tenemos que ωx y ωy son arbitrarias.

Si elegimos ωx = ωy = 0, entonces ωz = ω0
z es una constante arbitraria y la solución de

las ecuaciones es ~ω = (0,0,ω0
z ). El cuerpo rígido libre con un eje de simetría está girando

alrededor del mismo.

Si en cambio o bien ωx o bien ωy son constantes no nulas, las dos ecuaciones restantes

implican que ωz = 0. La solución en ese caso es ~ω = (ω0
x ,ω

0
y ,0). El cuerpo rígido libre con un

eje de simetría está girando alrededor de un eje arbitrario perpendicular al mismo.
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Si los tres momentos de inercia principales son diferentes, entonces las ecuaciones implican

que dos de las tres componentes de la velocidad angular deben anularse, digamos ωy =ωz = 0.

La solución es entonces ~ω = (ω0
x ,0,0). Es decir que el cuerpo rígido libre sin simetrías está

girando alrededor de alguno de sus ejes principales.

Vamos a concentrarnos en el último caso. Una pregunta natural es qué pasa si perturbamos ese

movimiento ligeramente, es decir si hacemos

ωx = ω
0
x + εδωx ωy = εδωy ωz = εδωz

con ε una magnitud muy pequeña. Insertando esto en las ecuaciones de Euler nos queda

εJx
dδωx

dt
+ ε

2 (Jz −Jy)δωyδωz = 0

εJy
dδωy

dt
+ ε (Jz −Jx)(ω

0
x + εδωx)δωz = 0

εJz
dδωz

dt
+ ε (Jx −Jy)(ω

0
x + εδωx)δωy = 0

Expandiendo estas ecuaciones y descartanto los órdenes cuadráticos en ε, nos queda

Jx
dδωx

dt
= 0

Jy
dδωy

dt
+(Jz −Jx)ω

0
x δωz = 0

Jz
dδωz

dt
+(Jx −Jy)ω

0
x δωy = 0

Es evidente que una solución de la primera ecuación es δωx = δω0
x constante. Para resolver las

dos ecuaciones que faltan, podemos tomar una derivada temporal adicional en la segunda

Jy
d2δωy

dt2 +(Jz −Jx)ω
0
x

dδωz

dt
= 0

y reemplazar en ella la derivada primera de δωz obtenida de la tercera

dδωz

dt
=−

Jx −Jy

Jz
ω

0
x δωy

con esto obtenemos

d2δωy

dt2 +
(Jx −Jz)(Jx −Jy)

JyJz
(ω0

x )
2︸ ︷︷ ︸

α2

δωy = 0

Donde hemos supuesto que el factor sobre la llave es positivo. Es decir que la ecuación para δωy

vendrá dada por

d2δωy

dt2 +α
2

δωy = 0

Una vez más, como ya vimos en clases previas cuando perturbamos el movimiento del problema

de dos cuerpos para obtener el teorema de Bertrand, llegamos a la ecuación de un oscilador

armónico. Esta tiene la solución inmediata

δωy = δω
0
y cos(α (t − t0))
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donde δω0
y y t0 son constantes de integración. Con este resultado, la solución para δωz se obtiene

a partir de la ecuación que escribimos más arriba para su derivada primera, en la forma

δωz =−
Jx −Jy

α Jz
ω

0
x δω

0
y sin(α (t − t0)) = δω

0
z sin(α (t − t0))

Esto claramente implica que la dirección de la velocidad angular perturbada rotará describiendo

una elipse alrededor del eje original de rotación x. Es decir que si la perturbación comienza siendo

pequeña, se conserva pequeña al transcurrir el tiempo. En otras palabras, el sistema es estable.

Pero ¿qué pasa si el factor sobre la llave en la ecuación de más arriba es negativo? En ese caso

escribimos α2 =−|α|2 con lo que la solución para δωy es ahora

δωy = δω
+
y e+|α| t +δω

−
y e−|α| t

con δω±
y constantes de integración. Para δωz tendremos

δωz = δω
+
z e+|α| t +δω

−
z e−|α| t

con las δω±
z proporcionales a las constantes δω±

y . Es decir que ahora la perturbación que comienza

pequeña crecerá exponencialmente. Esto quiere decir que el eje de rotación del cuerpo rígido se

desestabiliza, cambiando de dirección.

Ahora bien ¿de qué depende el signo de la magnitud sobre la llave? Claramente su origen está en

la combinación

(Jx −Jz)(Jx −Jy)

Nótese que esta combinación será positiva tanto cuando Jx sea el mayor de los momentos de

inercia principales, como cuando sea el menor, y será negativa en cambio cuando Jx sea el

momento de inercia intermedio. En otras palabras, la rotación de un cuerpo rígido es estable

cuando gira alrededor de sus ejes principales con momento de inercia mayor y menor, pero es

inestable cuando lo hace en torno al eje que tiene el momento de inercia intermedio.

Este efecto se conoce como teorema de la raqueta porque se hace evidente al arrojar al aire una

raqueta de tenis, y también con el nombre de efecto Dzhanibekov, por el cosmonauta ruso que lo

filmó en ausencia de gravedad en la estación espacial soviética Salyut-7 en los años 80’.

Ejercicio:

Perturbe el movimiento para el caso del cuerpo rígido libre simétrico del que hablamos

más arriba Jx = Jy = Jz, y describa sus propiedades de estabilidad.

Haga lo mismo para el caso del cuerpo rígido libre con un eje de simetría Jx =Jy 6=Jz,

para los dos tipos de movimiento que encontramos en ese caso.

Nota:

La estabilidad de la rotación de un cuerpo rígido en torno a sus ejes principales con

momentos de inercia mayor y menor se puede utilizar para estabilizar naves espaciales

de una manera que consume muy poco combustible.
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Por ejemplo, las sondas Pioneer 10 y Pioneer 11, lanzadas por la NASA en 1972 y

1973 respectivamente, fueron estabilizadas por rotación. Cada una de ellas estaba

construida con su antena de comunicaciones dispuesta a lo largo de uno de sus ejes

principales estables. Poco después del lanzamiento, se apuntó la antena hacia la Tierra

y se le imprimió a la nave una velocidad angular a lo largo de tal eje estable. De este

modo se logró que la antena permaneciera apuntando hacia la base durante largos

períodos, sin tener que disparar los cohetes de control.

Estas sondas fueron extremadamente durables, permaneciendo funcionales durante

30 años. Junto con las Voyager 1 y Voyager 2, son los primeros objetos hechos por el

hombre que abandonaron el Sistema Solar. Debido a que no era necesario disparar

sus cohetes de control para mantener la comunicación. se pudo recolectar una gran

cantidad de datos sobre su trayectoria libre. A fines de la década de 1990, se descubrió

en esos datos algo muy extraño: había algún efecto desconocido que las estaba

frenando, haciendo que se alejaran del Sol cada vez más lentamente.

Se generó una enorme actividad de investigación científica intentando explicar la

anomalía de las Pioneer. Se propusieron todo tipo de hipótesis, desde una simple

falla en la telemetría o un medio interestelar desconocido, hasta modificaciones de

la ley de gravitación universal a largas distancias o la presencia de una quinta fuerza

fundamental.

Finalmente, la explicación resultó tan simple como sorprendente: las naves recibían

una minúscula cantidad de calor, y generaban una cantidad mucho mayor en su

funcionamiento. Este calor se emitía al espacio en forma de radiación infrarroja la cual,

debido a la forma de la sonda, no tenía la misma intensidad en todas las direcciones.

Esta emisión anisotrópica provocaba una fuerza neta en dirección al Sol, frenando de

este modo su carrera.

9.2.3 Trompo

Usando lo que aprendimos en las clases anteriores, tenemos todos los elementos para escribir la

expresión del lagrangiano de un cuerpo rígido. Comencemos por elegir un sistema de coordenadas

en el cual la partícula en~r1 está en reposo ~̇r1 = 0. En este sistema, la energía cinética toma la

forma

K =
1
2
~ω t ·I ·~ω

Este sistema debe ser un sistema inercial, de modo tal de poder escribir el Lagrangiano según

L =
1
2
~ω t ·I ·~ω −V (ϑ ,ϕ,ψ)
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Para darle un uso efectivo a esta expresión, vamos a escribir su energía cinética de acuerdo a su

descomposición en los ejes principales

K =
1
2
Jxω

2
x +

1
2
Jyω

2
y +

1
2
Jzω

2
z

Debemos encontrar una forma explícita a las componentes de ~ω en términos de algún conjunto de

coordenadas generalizadas, por ejemplo los ángulos de Euler.

Como se ve en el dibujo, podemos escribir la velocidad angular como una superposición de una

rotación alrededor de cada uno de los ejes respecto de los cuales definimos los ángulos de Euler,

según

~ω = ~ωψ +~ωθ +~ωφ = ψ̇ ǩ′′+ ϑ̇ ǐ′+ ϕ̇ ǩ

Ahora bien, podemos elegir nuestro sistema de coordenadas de modo tal que uno de los ejes

principales del cuerpo apunte en la dirección z′′, mientras que los otros dos apuntarán en las

direcciones x′′ e y′′. Las componentes de la velocidad angular en este sistema de ejes serán

ωx = ~ω · ǐ′′ = ϑ̇ ωy = ~ω · ǰ′′ = ϕ̇ sinϑ ωz = ~ω · ǩ′′ = ψ̇ + ϕ̇ cosϑ

Esto nos permite escribir inmediatamente para la energía cinética

K =
1
2
Jxϑ̇

2 +
1
2
Jy sin2

ϑ ϕ̇
2 +

1
2
Jz(ψ̇ + ϕ̇ cosϑ)2

Un trompo es un cuerpo rígido que es simétrico de modo tal J2 = J3, es decir que dos de sus

ejes principales son iguales. Más aún, el potencial al que está sometido es puramente gravitatorio,

con lo que tenemos que

V = mgh = mgl cosϑ

Donde h = l cosϑ es la altura del centro de masas, el cual para un trompo homogéneo se encuentra

sobre el eje a una distancia l del punto fijo del mismo.

Con lo anterior, el lagrangiano toma la forma

L =
1
2
Jx
(
ϑ̇

2 + sin2
ϑ ϕ̇

2)+ 1
2
Jz(ψ̇ + ϕ̇ cosϑ)2 −mgl cosϑ

La primera observación que se puede hacer aquí es que tanto ϕ como ψ son coordenadas cíclicas,

con lo que los momentos generalizados asociados se conservan

pϕ =
∂L
∂ ϕ̇

= Jz(ψ̇ + ϕ̇ cosϑ)cosϑ +Jx sin2
ϑ ϕ̇ = pψ cosϑ +Jx sin2

ϑ ϕ̇ = constante

pψ =
∂L
∂ψ̇

= Jz(ψ̇ + ϕ̇ cosϑ) = constante

Esto nos permite despejar las velocidades generalizadas, en la forma

ϕ̇ =
pϕ − pψ cosϑ

Jx sin2
ϑ

ψ̇ =
pψ

Jz
−

pϕ − pψ cosϑ

Jx sin2
ϑ

cosϑ
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Rotación ψ

Nutación ϑ
Pecesión φ

Figura 9.2.1: Movimientos del trompo. La rotación se produce a en torno al eje de simetría, la precesión tiene

lugar alrededor del eje vertical, mientras que la nutación tiene en cuenta el balanceo del eje de

rotación.

El movimiento en la dirección ψ se llama rotación ya que corresponde a la rotación del trompo

alrededor de su eje principal. El movimiento en la dirección ϕ indica que el mencionado eje

principal está girando alrededor del eje z, y se denomina precesión. Estas ecuaciones indican

que si conocemos el movimiento de ϑ podemos obtener inmediatamente el de ϕ y ψ mediante

una integral temporal. Para esta última coordenada, la ecuación a resolver será la ecuación de

Lagrange

Jxϑ̈ +Jz(ψ̇ + ϕ̇ cosϑ)sinϑ ϕ̇ −Jxϕ̇
2 sinϑ cosϑ −mgl sinϑ = 0

Esta ecuación se simplifica si reemplazamos en ella los valores de ψ̇ y ϕ̇ que se obtienen de los

momentos generalizados

Jxϑ̈ + pψ sinϑ

(
pϕ − pψ cosϑ

Jx sin2
ϑ

)
−Jx

(
pϕ − pψ cosϑ

Jx sin2
ϑ

)2

sinϑ cosϑ −mgl sinϑ = 0

Esta ecuación se puede reescribir según

Jxϑ̈ =− d
dϑ

(
1

2Jx

(
pϕ − pψ cosϑ

sinϑ

)2

+mgl cosϑ︸ ︷︷ ︸
V1d

)

Donde vemos inmediatamente que se puede derivar del Lagrangiano truncado

L1d =
1
2
Jxϑ̇

2 −V1d

Es decir que, de modo similar a lo que encontramos en el caso del problema de dos cuerpos,

terminamos con un sistema unidimensional equivalente, ahora para la coordenada ϑ . Dado que ϑ

toma valores a lo largo de un meridiano, el espacio de configuración es un semicírculo C = S1/Z2.
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Potencial efectivo

Ea

Ec

Nutación

ϑc

Figura 9.2.2: Potencial efectivo para el trompo: el potencial efectivo como función de ϑ diverge en los valores

extremos ϑ = 0 y ϑ = π, lo que implica que el movimiento de nutación es siempre acotado.

Existe un valor mínimo de la energía en el que no hay nutación y se produce precesión regular.

Le energía correspondiente toma la forma

Ẽ =
1
2
Jxϑ̇

2 +V1d(ϑ)

De aquí se puede despejar la velocidad angular según

ϑ̇ =

√
2

Jx

(
Ẽ −V1d(ϑ)

)
Lo que se puede integrar, obteniendo la solución completa del problema

t = t0 +
∫

ϑ

θ0

dϑ√
2

Jx

(
Ẽ −V1d(ϑ)

)
Reemplazando en las fórmulas de más arriba para las velocidades ϕ̇ y ψ̇ e integrando, tenemos

una solución completa del problema.

Sin embargo, de modo similar a lo que pasaba en el problema de dos cuerpos, podemos tener una

descripción cualitativa de las características principales del movimiento sin necesidad de hacer las

mencionadas integrales, simplemente analizando el potencial efectivo V1d.

Primero notemos que, debido al sinϑ en el denominador, el potencial efectivo V1d diverge para

ϑ = 0 y para ϑ = π. Es decir que sea cual fuere la energía Ẽ, siempre tendremos dos puntos de

retorno 0 < ϑ2 < ϑ < ϑ1 < π. Esto implica que el eje principal del trompo realizará un movimiento

de nutación o cabeceo en el ángulo ϑ entre estos dos valores ϑ1 ≤ ϑ ≤ ϑ2, a medida que precesa

alrededor del eje z. Dada la fórmula de más arriba para la velocidad de precesión ϕ̇ podemos ver

que en ambos extremos de la oscilación esta velocidad tomará los valores

ϕ̇2 =
pϕ − pψ cosϑ2

Jx sin2
ϑ2

ϕ̇1 =
pϕ − pψ cosϑ1

Jx sin2
ϑ1
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Vemos que

Estos valores de la velocidad de precesión ϕ̇ tendrán el mismo signo si pϕ/pψ > cosϑ2 o

si pϕ/pψ < cosϑ1. Este caso el eje del trompo se estará moviendo alrededor del eje z en

la misma dirección en ambos extremos de la oscilación. Estamos en presencia de una

precesión cuasiperiódica.

Por otro lado, los valores de ϕ̇ tendrán signos diferentes si cosϑ1 < pϕ/pψ < cosϑ2, con lo

que el eje del trompo se estará moviendo en direcciones opuestas en cada extremo de la

oscilación. Esto se denomina precesión alternada.

Existe un caso límite entre ambos comportamientos cuando pϕ/pψ = cosϑ2, lo que implica

que la velocidad de precesión en el extremo superior de la nutación se anula. Este caso se

realiza cuando “soltamos” el trompo en un ángulo fijo, de modo que su velocidad angular

inicial tenga ϕ̇0 = 0. En ese caso tendremos

pϕ = Jzψ̇0 cosϑ0 pψ = Jzψ̇0

De donde pϕ/pψ = cosϑ0. Además dado que ϑ̇0 = 0 es evidente que estamos en uno de los

puntos de retorno, con lo que naturalmente podemos identificar ϑ0 = ϑ2.

Cuando la energía Ẽ toma el valor del mínimo del potencial efectivo, entonces no hay

movimiento de nutación ϑ̇ = 0 y estamos en presencia de una precesión regular. El mínimo

mencionado ocurre cuando

V ′
1d =

1
Jx

(
pϕ − pψ cosϑ

sinϑ

)(
pψ +

(
pφ − pψ cosϑ

sin2
ϑ

)
cosϑ

)
−mgl sinϑ = 0

lo que se puede reescribir en términos de las velocidades que despejamos más arriba como

ϕ̇
(

pψ + ϕ̇ cosϑ
)
= Jxmgl, de donde se puede despejar la velocidad ϕ̇ del movimiento de

precesión regular.

Ejercicio:

Usando un software que permita dibujar curvas como Mathematica o GeoGebra, estudie

la forma del potencial como función de cosθ para valores fijos de pψ , pϕ y el parámetro

Jzml.

¿Qué sucede con el potencial cuando el trompo gira muy rápidamente? ¿Qué implica

esto para el movimiento resultante?

¿Que sucede cuando el roce frena el movimiento de rotación y el trompo gira demasiado

lentamente? ¿Qué implica esto para el protagonista de la película “Inception”?
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Figura 9.2.3: Movimiento de precesion. Dependiendo de los valores de los momentos pφ y pψ podemos

tener precesión cuasiperiódica (izquierda) precesión extrema (centro) y precesión alternada

(derecha).

9.3 Resumen

En esta clase obtuvimos las ecuaciones que rigen el movimiento de un cuerpo rígido, y encontramos

sus soluciones para dos casos particulares: el cuerpo rígido libre y el trompo.

En el caso de cuerpo rígido libre asimétrico, aprendimos que la rotación será estable alrededor

de los ejes principales con momento de inercia mayor y menor, e inestable alrededor del eje con

momento de inercia intermedio.

En el caso de un trompo, fuimos capaces de aislar y describir las tres componentes de su movi-

miento, a saber la rotación, la precesión, y la nutación.
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10. Transformaciones de Legendre

10.1 Objetivos

Adrien-Marie Legendre

En las clases previas, definimos los momentos genera-

lizados como las derivadas del lagrangiano respecto de

las velocidades generalizadas. Estos son naturalmente

funciones de las coordenadas y las velocidades.

En varios casos, invertimos estas funciones para escri-

bir algunas de las velocidades generalizadas en función

de las coordenadas y los impulsos. Al reemplazar en

las ecuaciones de movimiento, esto frecuentemente sim-

plificó su solución. Utilizamos tal método al describir el

movimiento del sistema de dos cuerpos y del trompo.

En la presente clase, estudiaremos la forma de generali-

zar esta construcción.

10.2 Transformación de Legendre

Comenzamos la discusión presentando en esta sección una técnica matemática general, que apli-

caremos en las secciones subsiguientes a la descripción del movimiento de un sistema mecánico.

Supongamos una cualquiera curva en el plano. Como se puede ver en la figura 10.2.1, la informa-

ción sobre forma de la curva está completamente contenida en su haz de tangentes. En efecto,
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b(p)

x

f(x)

Figura 10.2.1: Ilustración de una función f (x) y su haz de rectas tangentes. Conociendo la ordenada al

origen b(p) que corresponde a la recta tangente con pendiente p es posible reconstruir

completamente la función.

si conocemos la ordenada al origen de cada recta tangente como una función de su pendiente,

podemos trazar cada recta del haz y vislumbrar en el gráfico resultante una curva envolvente, que

determina completamente el perfil de nuestra curva original.

Para encontrar este mapeo de manera explícita, supongamos que la curva está definida en el

plano {x,z} por la fórmula

z = f (x)

Una tangente cualquiera estará entonces descripta por una recta, que satisface la ecuación

z = px−b

Donde p es la pendiente y −b es la ordenada al origen. Si asumimos que se trata de la recta

particular que toca la curva en el punto donde la variable independiente toma el valor x, sabemos

que debe satisfacer en dicho punto las siguientes condiciones de tangencia

px−b = f (x)

p = f ′(x)

Asumiendo las condiciones de regularidad necesarias sobre la derivada f ′(x), podemos invertir

localmente la segunda ecuación de manera de obtener el valor de x como una función de la

pendiente, en la forma

x = f ′−1
(p)≡ v(p)
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Donde hemos supuesto que f ′(x) es invertible en el punto x, y llamamos v(p) a su función inversa

en el valor p de la pendiente. Por otro lado, es evidente de la primera ecuación que la ordenada

al origen se puede despejar como una función de x, en la forma b(x) = px− f (x). Sin pérdida de

generalidad podemos insertar la inversa x = v(p) para escribirla como una función de la pendiente

p según

b(p) = pv(p)− f (v(p))

Esta fórmula describe completamente el haz de tangentes, ya que provee una ordenada al origen

para cada valor de la pendiente. Se denomina la transformada de Legendre de la función f (x).

Dada cualquier función f (x) de una variable x, su transformada de Legendre b(p) es una función

de la pendiente p, que se calcula usando la fórmula de arriba, donde v(p) es la función inversa

local de f ′(x). Como veremos en lo que sigue, la transformación de Legendre se puede generalizar

al caso de varias variables, donde podemos transformar respecto de todas las variables o sólo de

algunas de ellas.

Ejemplo: derivada de la transformada de Legendre

Cuando calculamos la derivada de la transformación de Legendre respecto de su

variable, obtenemos

b′(p) = v(p)+ pv′(p)− f ′(v(p))v′(p) = f ′−1
(p)

donde usamos que v(p) = f ′−1(p) para cancelar los dos últimos términos.

Esto implica que la derivada de la transformada de Legendre de una función cualquiera

está dada por la función inversa de la derivada de la misma.

Ejemplo: transformada de Legendre inversa

Supongamos ahora que dibujamos la curva en el plano (p,h) dada por la función b(p)

en la forma

h = b(p)

Una recta cualquiera en este plano se puede describir con

h = x p−g

donde x es ahora la pendiente y −g es la ordenada al origen. Queremos encontrar g(x)

que es la tranformada de Legendre de b(p). En el valor de la variable independiente

p donde la curva entra en contacto con la recta, se deben cumplir las condiciones de

tangencia

xp−g = b(p)

x = b′(p)
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Asumiendo condiciones suficientes de regularidad sobre b′(p), podemos invertir local-

mente la segunda ecuación para obtener p en la forma

p = b′−1(x)≡ w(x)

donde hemos definido la función w(x) como la inversa de b′(p). Esto nos permite escribir

la transformada de Legendre de b(p) como

g(x) = xw(x)−b(w(x))

Usando la identidad que escribimos más arriba para la derivada b′(p) vemos que se

cumple que w(x) = f ′(x) con lo cual

g(x) = f ′(x)x−b = f (x)

Donde hemos utilizado en la segunda igualdad las condiciones de tangencia en el punto

x que escribimos al principio de la discusión. Es decir que una segunda transformada

de Legendre nos devuelve la función original f (x).

La transformación de Legendre se puede generalizar al caso en el que la función depende de

varias variables. Por ejemplo, supongamos que tenemos una función de dos variables que describe

una superficie en el espacio {x,y,z} definida como

z = f (x,y)

Esta función puede reemplazarse por su haz de planos tangentes, el cual contiene la misma

información. Tales planos están descriptos por la ecuación

z = px x+ py y−b

donde px, py denotan las inclinaciones del plano en las direcciones de cada uno de los ejes, y −b

es la ordenada al origen. En el punto (x,y) donde un dado plano entra en contacto con la superficie,

se cumplen las condiciones de tangencia

f (x,y) = px x+ py y−b

∂x f (x,y) = px ∂y f (x,y) = py

Supongamos que las derivadas parciales cumplen las condiciones de regularidad necesarias tales

que podemos invertir las dos últimas ecuaciones, para obtener las coordenadas del punto de

contacto en la forma

x = vx(px, py) y = vy(px, py)

Esto nos permite entonces reemplazar en la primera ecuación, y despejar de allí para obtener la

ordenada al origen b en términos de la fórmula

b(px, py) = px vx(px, py)+ py vy(px, py)− f (vx(px, py),vy(px, py))

Hemos obtenido la transformada de Legendre en dos variables de la función f (x,y). La generaliza-

ción para más variables es completamente directa.
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Ejercicio:

Pruebe que las derivadas de la transformada de Legendre de arriba se pueden calcular

en la forma

∂px b = vx(px, py) ∂pyb = vy(px, py)

donde al igual que en el caso previo hemos cancelado términos usando la definición

de vx(px, py) y vy(px, py).

Una vez más reobtenemos las funciones que nos permitieron invertir las derivadas de

la función original.

Ejercicio:

Calcule la transformada de Legendre de un polinomio cuadrático que depende de dos

variables {x,y}, identifique las funciones vx(px, py) y vy(px, py), y verifique la propiedad

que cumplen las derivadas según el ejercicio anterior.

En el caso de una función que depende de varias variables, podemos también definir una trans-

formada de Legendre parcial. Esto significa que tomaremos algunas de las coordenadas como

parámetros. Por ejemplo, para el caso de una función de dos variables, podemos considerar que

la ecuación

z = f (x,y)

define un conjunto de curvas en el plano (x,z) parametrizadas por el parámetro y. Para cada valor

del parámetro y, la curva correspondiente puede ser reemplazada por su haz de tangentes. Por

supuesto, la pendiente y ordenada al origen de cada recta del mencionado haz dependerán del

valor del parámetro. Podemos entonces escribir

y = px(y)x−b(y)

Siguiendo pasos análogos a los de más arriba, encontramos su transformada de Legendre,

escribiendo en el punto de tangencia x(y)

f (x(y),y) = px(y)x(y)−b(y)

∂x f (x(y),y) = b(y)

Invirtiendo la segunda ecuación

x(y) = vx(px,y)

donde ahora la función inversa tendrá también una dependencia en el parámetro y. Reemplazando

en la primera ecuación obtenemos

b(px,y) = px vx(px,y)− f (vx(px,y),y)

Lo que define la transformada parcial de Legendre de la función f (x,y) respecto de la variable x.

Esto se puede generalizar sin dificultad para un número arbitrario de variables.



138 Capítulo 10. Transformaciones de Legendre

Ejemplo: derivadas de la transformada parcial

La transformada parcial de Legendre tiene la propiedad de que sus derivadas satisfacen

∂px b = vx(px,y)

∂yb = px ∂yvx −∂x f ∂yvx −∂y f =−∂y f

En la igualdad en la segunda línea usamos la condición de tangencia px = ∂x f para

eliminar los dos primeros términos. Este resultado es particularmente interesante,

porque la derivada de la izquierda corresponde a la derivada parcial de una función

que depende de px e y, mientras que la derecha actúa sobre una función de x e y. Es

decir que mientras una se toma manteniendo px constante, la otra se calcula con x

constante.

Esta observación resultará de enorme utilidad en lo que sigue.

Nota

Durante más de dos siglos, hasta 2005, la imagen de Adrien-Marie Legendre fue

confundida con la de un político francés llamado Louis Legendre, que apareció sin el

nombre y junto con algunos matemáticos contemporáneos tales como Lagrange en un

libro de la época.

El único retrato conocido de Adrien-Marie Legendre es la acuarela en la que se basa

la imagen con la que abrimos este capítulo, que se descubrió en 2008 en un libro de

caricaturas de los miembros del Institut de France.

10.2.1 Hamiltoniano

Veamos ahora cómo podemos aplicar la idea de transformada de Legendre a la descripción del

movimiento.

Supongamos que tenemos un sistema mecánico de N partículas, descripto en términos de coor-

denadas generalizadas {qi} donde i ∈ {1, . . . ,3N}. Su lagrangiano será una función de las coor-

denadas y las velocidades generalizadas L(q̇i,qi, t), que nos permite escribir las ecuaciones de

Lagrange en la forma

d
dt

(
∂L
∂ q̇i

)
− ∂L

∂qi
= 0

Ahora bien, si recordamos la definición de los momentos generalizados

pi =
∂L
∂ q̇i

vemos los mismos son naturalmente funciones de las coordenadas y velocidades generalizadas.

Si asumimos que podemos despejar las velocidades generalizadas {q̇i}, tenemos que

q̇i = vi(p j,q j, t) donde i, j ∈ {1, . . . ,3N},
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Esto nos permite definir la transformada de Legendre del lagrangiano con respecto a las velocidades

generalizadas {q̇i} en la forma

H(pi,qi, t) = pi vi(p j,q j, t)−L(vi(p j,q j, t),qi, t)

donde en el primer término estamos sumando sobre el índice l. La función H(pi,qi, t) se denomina

hamiltoniano del problema, y es naturalmente una función de las coordenadas {qi} y de los impulsos

{pi}. Como veremos, toda la información dinámica del problema, que estaba contenida en el

lagrangiano, ahora se puede reobtener a partir del hamiltoniano. En el contexto hamiltoniano, el

conjunto de todos los pares de coordenadas e impulsos {(pi,qi)} se denomina variables canónicas.

En la transformación de Legendre que acabamos de realizar, las coordenadas generalizadas {qi}

cumplen el rol de parámetros. De acuerdo a lo que aprendimos en la sección anterior, esto implica

que se cumple la siguiente propiedad importante

∂H
∂qi

=
∂v j

∂ q̇i
p j −

∂L
∂ q̇ j

∂v j

∂qi
− ∂L

∂qi
=− ∂L

∂qi

dado que los dos primeros términos se cancelan. En estas expresiones, las derivadas parciales

del lado derecho se calculan manteniendo las velocidades {q̇i} constantes, ya que son derivadas

de L(q̇i,qi, t) que es una función de las coordenadas y velocidades generalizadas {q̇i,qi}. Por otra

parte, las derivadas del lado izquierdo se toman manteniendo los impulsos {pi} constantes, ya

que actúan sobre H(pi,qi, t) que es una función de las variables canónicas {(pi,qi)}.

Las identidades de arriba nos permiten reescribir las ecuaciones de Lagrange para las coordenadas

{qi} en la forma

d
dt

(
∂L
∂ q̇i

)
− ∂L

∂qi
= ṗi −

∂L
∂qi

= ṗi +
∂H
∂qi

= 0

En la última expresión de la derecha, las velocidades {q̇l} han desaparecido completamente, ya

que el hamiltoniano no depende de ellas. Esto nos permite reinterpretarla como una ecuación

diferencial directamente para los impulsos {pi}. Sin embargo, en esta ecuación la función H(pi,qi, t)

depende de las coordenadas {qi}, por lo que necesitamos también alguna manera de obtener la

dependencia temporal de estas últimas. Para eso utilizamos la relación

q̇i = vi(p j,q j, t) =
∂H
∂ pi

Hemos obtenido entonces un conjunto completo de ecuaciones para describir el movimiento

del sistema en términos del hamiltoniano H(pi,qi, t) en lugar del lagrangiano L(qi, q̇i, t). Estas

ecuaciones se leen

ṗl =−∂H
∂ql

q̇l =
∂H
∂ pl

y se conocen como ecuaciones de Hamilton.

Es decir que hemos remplazado un conjunto de 3N ecuaciones diferenciales de segundo orden

para las 3N variables {qi} dadas por las ecuaciones de Lagrange, por un conjunto de 6N ecuaciones
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de primer orden para las 3N coordenadas y los 3N impulsos {(qi, pi)} dadas por las ecuaciones

de Hamilton. Por cada una de las ecuaciones necesitaremos una condición inicial, por lo que

nuestro espacio de estados sigue siendo E =R3N . En este sentido, es correcto decir que así como

las ecuaciones de Lagrange describen el movimiento del sistema en el espacio de configuracion

C = R3N , trazando una curva dada por las funciones {qi(t)} a medida que transcurre el tiempo,

las ecuaciones de Hamilton lo describen en el espacio de estados E en términos de la curva dada

por {(qi(t), pi(t))}.

Ejemplo: relación con la energía

La fórmula del Hamiltoniano que hemos escrito más arriba resulta muy similar a la que

escribimos en el capítulo 2 para la energía mecánica.

E(q̇i,qi) =
∂L
∂ q̇i

q̇i −L(q̇i,qi)

Sin embargo, en la fórmula anterior la energía es una función de las coordenadas y

velocidades generalizadas. Para obtener su relación con el hamiltoniano, tenemos que

usar la funciones vi(p j,q j, t) que nos dan las velocidades generalizadas como función

de los impulsos, para escribir

H(pi,qi, t) = E(vi(p j,q j, t),qi, t)

Es decir que el hamiltoniano es en efecto la energía, pero escrita como función de los

impulsos generalizados.

Por supuesto la construcción funciona en sentido contrario, usando el hecho de que una segunda

transformación de Legendre nos devuelve la función original. En efecto, dado un Hamiltoniano

H(pi,qi, t) para un sistema mecánico, podemos definir la velocidad generalizada usando las

ecuaciones de Hamilton según

q̇i =
∂H
∂ pi

de donde podemos invertir para obtener

pi = wi(q̇i,qi, t)

Con esto podemos recuperar el lagrangiano

L(q̇i,qi, t) = wi(q̇ j,q j, t)q̇i −H(w(q̇ j,q j, t),qi, t)

del cual pueden entonces obtenerse las ecuaciones de Lagrange.

Ejercicio:

Demuestre que usando las ecuaciones de Hamilton y la construcción anterior para el

lagrangiano, se recuperan las ecuaciones de Lagrange.
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Ejemplo: partícula en una dimensión

Dado el lagrangiano para una partícula de masa m que se mueve en una dimensión

bajo la acción de un potencial

L =
1
2

mẋ2 −V (x)

Obtenemos el momento generalizado según la definición

p =
∂L
∂ ẋ

= mẋ

esto se puede invertir para obtener la velocidad como función de los impulsos, en la

forma

ẋ =
p
m

≡ v(p)

Con esta fórmula, podemos computar la transformada de Legendre del lagrangiano

para obtener el hamiltoniano, según

H(p,x, t) = pv(p)−L(v(p),x, t) =
p2

2m
+V (x)

El cual resulta ser la energía mecánica escrita en términos del impulso, como demos-

tramos más arriba para el caso general.

Las ecuaciones de Hamilton de este hamiltoniano se obtienen tomando las derivadas

correspondientes, que resultan en

ẋ =
∂H
∂ p

=
p
m

ṗ =−∂H
∂x

=−∂V
∂x

Resolviendo la primera ecuación para obtener p y reemplazando en la segunda, se

recupera la segunda ley de Newton

mẍ =−∂V
∂x

con lo que vemos que la descripción es completamente equivalente.

En el estudio de un sistema mecánico cualquiera, en ocasiones puede resultar ventajosa su

descripción en términos de ecuaciones de Lagrange, y en otras situaciones puede ser conveniente

el uso de ecuaciones de Hamilton. Nos ocuparemos de describir las ventajas y desventajas de

ambos enfoques en las clases por venir. Existe incluso un enfoque mixto, donde algunas de las

coordenadas satisfacen ecuaciones de Lagrange, mientras que otras cumplen ecuaciones de

Hamilton, como describiremos en la siguiente sección.

10.2.2 Ruthiano

Vimos más arriba que en el caso de una función de varias variables, podíamos definir una

transformada de Legendre parcial respecto de un subconjunto de las mismas. Resulta natural
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entonces preguntarse si, así como al transformar el lagrangiano respecto de todas las velocidades

generalizadas obtenemos una descripción equivalente del movimiento, podríamos hacer lo mismo

en términos de una transformada parcial.

Supongamos que tenemos un sistema mecánico de N partículas, descripto en términos de coor-

denadas generalizadas {qi} donde i ∈ {1, . . . ,3N}. Podemos separar las coordenadas en dos

subconjuntos, el primero {qk} con k ∈ {1, . . . ,D} y el segundo {ql} con l ∈ {D+ 1, . . . ,3N}. Es-

cribimos entonces los momentos generalizados del segundo subconjunto de acuerdo con su

definición

pl =
∂L
∂ q̇l

donde l ∈ {D+1, . . . ,3N}

Asumiendo que podemos despejar las velocidades generalizadas del subconjunto {q̇l}, tenemos

que

q̇l = vl(q̇k, pl ,qi, t) donde k ∈ {1, . . . ,D}, l ∈ {D+1, . . . ,3N}

Con lo que podemos escribir la transformada parcial de Legendre del lagrangiano con respecto a

un subconjunto particular de sus variables dado por las velocidades generalizadas {q̇l} según

R(q̇k, pl ,qi, t) = vl(q̇k, pl ,qi, t)pl −L(q̇k,vl(q̇k, pl ,qi, t),qi, t)

donde estamos sumando sobre el índice l. La transformada R(q̇k, pl ,qi) se denomina ruthiano del

problema. En ella hemos reemplazado la dependencia del lagrangiano en el subconjunto {q̇l} de

las velocidades generalizadas, por la dependencia del ruthiano en los correspondientes impulsos

{pl}.

Repitiendo pasos análogos a los de la sección anterior, demostramos que las variables canónicas

{(ql , pl)} con l ∈ {D+1, . . . ,3N} satisfacen ecuaciones de Hamilton

ṗl =− ∂R
∂ql

q̇l =
∂R
∂ pl

donde l ∈ {D+1, . . . ,3N}

En cuanto a las coordenadas restantes {qk} con k ∈ {1, . . . ,3N}, estas satisfacen las ecuaciones

de lagrange

d
dt

(
∂L
∂ q̇k

)
− ∂L

∂qk
=−

(
d
dt

(
∂R
∂ q̇k

)
− ∂R

∂qk

)
= 0 donde k ∈ {1, . . . ,D}

donde utilizamos el hecho de que en la transformada de Legendre que define el ruthiano, las

velocidades generalizadas {q̇k} y la totalidad de las coordenadas generalizadas {qi} cumplen el

rol de parámetros, y que por lo tanto se cumple que

∂R
∂qk

=− ∂L
∂qk

∂R
∂ q̇k

=− ∂L
∂ q̇k

En estas fórmulas, las derivadas parciales del lado derecho se calculan manteniendo las veloci-

dades {q̇l} constantes, mientras que las derivadas del lado izquierdo se toman manteniendo los

impulsos {pl} constantes.
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Es decir que en términos del ruthiano, un subconjunto de las coordenadas generalizadas {qk} con

k ∈ {1, . . . ,D} cumplen ecuaciones de Lagrange, mientras las coordenadas restantes se acomodan

en pares canónicos con los correspondientes impulsos {(ql , pl)} con l ∈ {D+1, . . . ,3N} y satisfacen

ecuaciones de Hamilton.

10.3 Truncaciones

En el caso particular en el que las coordenadas {ql} con l ∈ {D+1, . . . ,3N} son cíclicas, el co-

rrespondiente ruthiano resulta de utilidad para describir el movimiento del sistema en un espacio

de configuración reducido. En efecto, la primera ecuación de Hamilton para R(q̇k, pl ,qk, t) toma la

forma

ṗl =
∂R
∂ql

= 0

con lo que los impulsos {pl} se conservan. Por supuesto, esto ya era explícito en las ecuaciones de

lagrange de L(qi, q̇i). La ventaja del nuevo formalismo es que nos permite reemplazar los valores

constantes de los {pl} directamente en el ruthiano, algo que no podríamos hacer en el lagrangiano

original.

Las ecuaciones de movimiento para las coordenadas restantes {qk} con k ∈ {1, . . . ,D} serán las

ecuaciones de Lagrange que se obtienen a partir de R(q̇k, pl ,qk, t). Esto implica que podemos

definir un lagrangiano truncado en la forma

Ltrunc(qk, q̇k, t) =−R(qk, q̇k, pl , t)

Este lagrangiano describe un sistema en dimensión D < 3N, con lo que hemos en efecto reducido

la dimensionalidad del espacio de configuración C .

Nótese que la truncación se puede llevar a cabo incluso cuando las coordenadas {ql} no son

cíclicas, siempre que exista una solución donde tanto ellas como los {pl} sean constantes. Otra

observación es que podemos sumar a Ltrunc una función arbitraria de los {pl} constantes, lo que

no afectará las ecuaciones de Lagrange.

Ejemplo: problema equivalente de una partícula en el problema de dos cuerpos

En el caso del problema de dos cuerpos, comenzamos con un sistema de dos partículas

con con un espacio de configuración de seis dimensiones C = R6, cuyo lagrangiano

se puede escribir, en coordenadas esféricas, en la forma

L(~̇rcm,~̇r,~r) =
1
2

mtot~̇r2
cm+

1
2

µ
(
ṙ2 + r2 (

φ̇
2 + θ̇

2 sin2
φ
))

−V (r)

Lo que nos permite identificar el momento lineal del centro de masas como

~pcm = mtot~̇rcm
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Esto se puede resolver para la velocidad del centro de masas

~̇rcm =
~pcm
mtot

≡~v(~pcm)

Con esto, el ruthiano se lee

R(~̇r,~pcm,~r) = ~pcm ·~v(~pcm)−L(~v(~pcm),~̇r,~r)

Explícitamente

R(~̇r,~pcm,~r) =
~p2
cm

2mtot
− 1

2
µ
(
ṙ2 + r2 (

φ̇
2 + θ̇

2 sin2
φ
))

+V (r)

Dado que ~pcm se conserva, podemos reemplazar su valor constante en el ruthiano y

definir el lagrangiano truncado

L1part(~̇r,~r) =−R(~̇r,~pcm~r)+
~p2
cm

2mtot
=

1
2

µ
(
ṙ2 + r2 (

φ̇
2 + θ̇

2 sin2
φ
))

−V (r)

donde sumamos ~p2
cm/2mtot para eliminar una constante aditiva que no afecta las ecua-

ciones de movimiento para~r. Este problema tiene un espacio de configuración descripto

por~r, es decir que C = R3. Nótese que si hubiéramos reemplazado ~̇rcm directamente

en L hubiéramos obtenido un término adicional constante.

Ejemplo: problema equivalente en el plano para el problema de dos cuerpos

Si ahora estudiamos el sistema de una partícula que acabamos de obtener vemos que

el momento generalizado asociado a φ toma la forma

pφ = µr2
φ̇

lo que nos permite despejar

φ̇ =
pφ

µr2 ≡ vφ (pφ ,r)

Con esto podemos encontrar el ruthiano correspondiente como

R(ṙ, θ̇ , pφ ,r,φ) = pφ vφ (pφ ,r)−L1part(ṙ, θ̇ ,vφ (r, pφ ),r,φ)

es decir

R(ṙ, θ̇ , pφ ,r,φ) =
p2

φ

2µr2 − 1
2

µ
(
ṙ2 + r2

θ̇
2 sin2

φ
)
+V (r)

las correspondientes ecuaciones de Hamilton para pφ ,φ se pueden escribir

ṗφ = µr2
θ̇

2 sinφ cosφ

φ̇ =
pφ

µ r2

donde es evidente que existe una solución con φ = π/2 y pφ = 0 constantes. Reempla-

zando estos valores en el rutiano obtenemos el lagrangiano truncado

L2d(ṙ, θ̇ ,r) =−R(ṙ, θ̇ ,0,r,π/2) =
1
2

µ
(
ṙ2 + r2

θ̇
2)−V (r)

El espacio de configuración para este problema es C =R2, con lo que de nuevo hemos

reducido la dimensión del problema.
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Ejemplo: problema unidimensional equivalente en el problema de dos cuerpos

Dado el lagrangiano efectivo L2d podemos obtener el momento generalizado asociado

a la coordenada θ según

pθ = µr2
θ̇

De aquí obtuvimos una expresión para la velocidad angular en la forma

θ̇ =
pθ

µr2 ≡ v(θ̇ , pθ ,r)

Con esto el ruthiano se lee

R(ṙ, pθ ,r) = pθ v(θ̇ , pθ ,r)−L2d(ṙ,v(θ̇ , pθ ,r),r)

es decir

R(ṙ, pθ ,r) =−1
2

µ ṙ2 +
`2

2µr2 +V (r)

La ecuación de Hamilton para pθ implica que toma un valor constante pθ = `, con lo

que podemos reemplazarlo en el ruthiano para construir el lagrangiano truncado

L1d(ṙ,r) =−R(ṙ, `,r) =
1
2

µ ṙ2 −
(

`2

2µr2 +V (r)︸ ︷︷ ︸
V1d

)
=

1
2

µ ṙ2 −V1d

Que corresponde a un sistema de una partícula en una dimensión, descripto en términos

de un espacio unidimensional C = R. Nótese que este lagrangiano no coincide con el

que se obtendría de reemplazar θ̇ directamente en L2d.

Ejemplo: sistema unidimensional equivalente para el trompo

Para el caso del trompo, escribimos el lagrangiano en la forma

L(ϑ̇ , ϕ̇, ψ̇,ϑ) =
1
2
Jx
(
ϑ̇

2 + sin2
ϑ ϕ̇

2)+ 1
2
Jz(ψ̇ + ϕ̇ cosϑ)2 −mgl cosϑ

Los momentos generalizados asociados a las variables ϕ y ψ se pueden escribir según

pϕ = Jz(ψ̇ + ϕ̇ cosϑ)cosϑ +J2 sin2
ϑ ϕ̇

pψ = Jz(ψ̇ + ϕ̇ cosϑ)

se conservan. Los usamos para obtener las velocidades generalizadas, según

ϕ̇ =
pϕ − pψ cosϑ

Jx sin2
ϑ

≡ vϕ(ϑ , pϕ , pψ)

ψ̇ =
pψ

Jz
−

pϕ − pψ cosϑ

Jx sin2
ϑ

cosϑ ≡ vψ(ϑ , pϕ , pψ)

El correspondiente ruthiano tomará entonces la forma

R(ϑ̇ , pϕ , pψ)= pϕ vϕ(ϑ , pϕ , pψ)+ pψ vψ(ϑ , pϕ , pψ)−L(ϑ̇ ,vϕ(ϑ , pϕ , pψ),vψ(ϑ , pϕ , pψ),ϑ)
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o en otras palabras

R(ϑ̇ , pϕ , pψ) =−

(
1
2
Jxϑ̇

2 −
(

1
2Jx

(
pϕ − pψ cosϑ

sinϑ

)2

+mgl cosϑ

))
Dado que los impulsos pϕ , pψ se conservan, según se deduce de las correspondientes

ecuaciones de Hamilton, podemos reemplazar sus valores constantes para definir el

lagrangiano truncado unidimensional según L1d =−R, obteniendo

L1d(ϑ̇ ,ϑ) =
1
2
Jxϑ̇

2 −
(

1
2Jx

(
pϕ − pψ cosϑ

sinϑ

)2

+mgl cosϑ︸ ︷︷ ︸
V1d

)
=

1
2
Jxϑ̇

2 −V1d

Con esto, redujimos el espacio de configuración para quedarnos con C = S1/Z2. Es

importante mencionar que este lagrangiano no corresponde al que se obtendría de

reemplazar ϕ̇ y ψ̇ directamente en L.

En consecuencia, en todos los casos que hemos explorado previamente, cada vez que pudimos

escribir un lagrangiano truncado que redujera el número de grados de libertad, estábamos en

realidad obteniendo un ruthiano respecto de los impulsos conservados. Es importante señalar

que el reemplazar los valores constantes de los impulsos en el correspondiente lagrangiano no

lleva al resultado correcto. Esto sucede porque las ecuaciones de Lagrange se obtienen tomando

derivadas parciales en las que son las velocidades y no los impulsos las que se mantienen

constantes.

10.4 Resumen

En esta clase aprendimos que dado un lagrangiano cualquiera, podemos construir un hamiltoniano

como su transformada de Legendre respecto de las velocidades generalizadas. Tal función también

permite describir el movimiento, en términos de ecuaciones de Hamilton para las correspondientes

coordenadas e impulsos generalizados.

En nuestra construcción, asumimos que siempre era posible despejar las velocidades generalizadas

en términos de las variables canónicas. Posponemos para la última clase la discusión de qué

sucede cuando tal condición no se cumple.

Vimos también que la transformada de Legendre puede realizarse respecto de un subconjunto par-

ticular de las velocidades generalizadas, para obtener un ruthiano. Las ecuaciones de movimiento

se obtienen entonces como ecuaciones de Hamilton para el subconjunto correspondiente de coor-

denadas e impulsos generalizados, y ecuaciones de lagrange para las coordenadas generalizadas

restantes.

Cuando existen soluciones con impulsos constantes, lo que sucede por ejemplo cuando las

coordenadas correspondientes son cíclicas, podemos reemplazar directamente tales valores

constantes en el ruthiano y obtener un lagrangiano truncado que describe el movimiento del resto

de las coordenadas generalizadas.



11. Vínculos

11.1 Objetivos

Jean-Baptiste le Rond d’Alembert

Comenzamos este curso con un sistema de N partículas

cuyas posiciones estaban determinadas por vectores

~rn. Como consecuencia, nuestro sistema físico tenía 3N

grados de libertad, cada uno de los cuales tomaba valores

en la recta real. Es decir que su espacio de configuración

estaba dado por C = R3N . Al describir el movimiento en

coordenadas generalizadas, simplemente cambiamos de

coordenadas en el mismo espacio C = R3N .

Sin embargo, cuando estudiamos más adelante el cuerpo

rígido, lo definimos como un sistema de partículas cuyas

distancias relativas están fijas. Para esto, usamos como

coordenadas generalizadas la posición de una de tales

partículas~r1 ∈ R3, la orientación del cuerpo respecto de

un sistema de ejes de referencia {φ ,θ ,ψ} ∈ SO(3), y las distancias entre las diferentes partículas

que lo componen {l1, l2, l3, ln1, ln2, ln3}. Acto seguido, impusimos la condición de que el valor de

tales distancias permaneciera fijo. Es decir que redujimos el espacio de configuración del sistema

a C = R3 ×SO(3), que es una variedad no trivial dentro del espacio original R3N .

Ahora bien ¿es correcto hacer esta reducción? ¿Cómo sabemos que al dejar fijas las distancias

se cumplen (siquiera de forma aproximada) las ecuaciones de movimiento que obtendríamos del

lagrangiano tomando las derivadas correspondientes?

A continuación vamos a estudiar las condiciones bajo las cuales tales vínculos tienen sentido físico.

Motivaremos la intuición física en base a ejemplos, y luego la generalizaremos.
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11.2 Origen físico de los vínculos

Un vínculo aparece cuando hay una función de las coordenadas y las velocidades generalizadas

que se debe mantener constante durante el movimiento. Por ejemplo, la longitud de la soga de un

péndulo o el ángulo de un plano inclinado. En lo que sigue, veremos cuál es el origen microscópico

de tales restricciones, y cómo se incorporan en el formalismo lagrangiano.

11.2.1 Vínculos holonómicos y coordenadas adaptadas

Para entender qué es un vínculo, es conveniente ilustrarlo con una serie de ejemplos, que luego

extenderemos al caso general. Comenzaremos en una dimensión, y luego analizaremos ejemplos

bidimensionales en coordenadas cartesianas y polares.

Ejemplo: partícula en una dimensión

Comencemos con un ejemplo sencillo: sea un sistema de una partícula en una dimen-

sión, sometida a una fuerza conservativa. El lagrangiano toma la forma

L =
1
2

mẋ2 −V (x)

La energía de este sistema vendrá dada por

E =
1
2

mẋ2 +V (x)

De aquí se puede despejar la velocidad, según

ẋ =

√
2(E −V (x))

m

donde vemos que será real en las regiones en las cuales V (x)< E. Esto es la forma

matemática de la intuición sencilla de que el sistema se moverá en la región en la que

su energía cinética sea mayor o igual a cero.

Ahora bien, supongamos que el potencial tiene la forma de pared infinita, es decir

V (x) =

 0 x ≤ x+

∞ x > x+

En este caso es evidente que el sistema se moverá libremente pero confinado a la

región x ≤ x+ a lo largo de toda su evolución temporal. Esto es lo que se conoce como

un vínculo (o ligadura) unilateral.

Sin embargo, un potencial de este tipo puede parecer muy poco realista. Para acercarlo

un poco más a algo realizable, supongamos que tenemos un potencial V (x) que tiene

una asíntota vertical, es decir

V (x) −→x→x+∞

Ahora el potencial no es algo tan rudo como una pared infinita, pero de nuevo el

sistema se moverá en la región x ≤ x+. Si el potencial es pequeño cuando x � x+ y
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x+ x+

x+

Emax

x+x- xmin

Emax

Figura 11.2.1: Vínculos en una dimensión. Un potencial con una pared no permite que la partícula pase

de x+, y lo mismo es cierto para un potencial con una asíntota (arriba). En un caso realista,

la energía está acotada lo que implica que la partícula no puede pasar de x+ (abajo a la

izquierda). Si el potencial tiene un mínimo la partícula se moverá en la región x− < x < x+, y si

el mínimo es muy marcado estará confinada a x ≈ xmin.

su crecimiento es muy rápido cuando nos acercamos a x ∼ x+, podemos decir que el

sistema se moverá libremente confinado a la región x ≤ x+, realizando entonces un

vínculo unilateral.

En una situación real no es necesario que haya realmente una asíntota. En efecto,

dado que cualquier sistema tiene una energía máxima finita Emax, su movimiento estará

limitado a la región del espacio donde se satisface V (x)< E < Emax. Si suponemos que

el potencial crece con x (si decrece, simplemente podemos cambiar x por −x en la

discusión que sigue) entonces habrá un punto x+ donde se cumple que

V (x+) = Emax

Por lo que es correcto decir que la evolución temporal del sistema cumplirá x ≤ x+. Si

el crecimiento es muy rápido al acercarnos a x+ y el potencial es pequeño lejos de ese

punto, entonces esto realiza un vínculo unilateral en un sistema real.

Ahora bien, si se cumple que a la izquierda de x+ el potencial tiene un mínimo, digamos

en en x = xmin, y al continuar hacia la izquierda en la dirección x < xmin el potencial

también crece muy rápidamente, entonces existirá también un segundo punto x− tal

que

V (x−) = Emax
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lo que por su parte implica el vínculo unilateral x ≥ x− Por lo tanto es correcto decir que

el sistema se moverá alrededor de xmin entre dos extremos x− < x < x+.

Si el potencial crece muy rápidamente cuando x se aleja de xmin en ambas direcciones,

esto que implica que la energía alcanzará el valor Emax en valores de x que son muy

cercanos a xmin tanto a su derecha como a su izquierda. En otras palabras, tendremos

que x+ ≈ x−, por lo que podemos decir que el sistema está confinado al punto

x = xmin

Esto es lo que se conoce como un vínculo (o ligadura) bilateral.

Ejemplo: partícula en una dimensión, forma alternativa

Si el potencial es diferenciable en el mínimo, hay una manera alternativa de entender

el ejemplo anterior. Podemos escribir un desarrollo en serie de Taylor alrededor del

mínimo según

V (x)≈V (xmin)+
1
2

V ′′(xmin)(x− xmin)
2 +O(x− xmin)

3

Por lo tanto, vemos que cerca del mínimo el sistema se comporta como un oscilador

armónico con constante restauradora k =V ′′(xmin). La solución para el movimiento de

dicho oscilador armónico es la que conocemos de los cursos básicos

x = xmin+Acos

(√
V ′′(xmin)

m
(t − t0)

)

siendo A es la amplitud de la oscilación. Podemos obtener entonces la energía del

sistema usando la fórmula del oscilador armónico E = kA2/2, es decir

E =
1
2

V ′′(xmin)A2 ≤ Emax

Donde hemos escrito explícitamente la cota máxima para la energía. Invirtiendo la

expresión anterior podemos obtener una cota para la amplitud de oscilación, con la

forma

A ≤

√
2Emax

V ′′(xmin)

Cualquier sistema real tiene una cantidad maxima de energía Emax que es finita. Por lo

tanto, la amplitud de su movimiento será más pequeña cuanto mayor sea la constante

restauradora V ′′(xmin). Para una constante V ′′(xmin) lo bastante grande, es una buena

aproximación afirmar que la amplitud es nula, es decir que el sistema no oscila y está

fijo en su punto de equilibrio x = xmin. Esta es otra manera de comprender cómo aparece

un vínculo bilateral.
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Ejemplo: partícula en dos dimensiones, con potencial unidimensional

Un razonamiento completamente análogo funciona cuando el sistema es bidimensional,

pero el potencial depende de una sola de las coordenadas.

L =
1
2

m
(
ẋ2 + ẏ2)−V (x)

La energía de este sistema vendrá dada por

E =
1
2

m
(
ẋ2 + ẏ2)+V (x)

En cualquier situación real, el sistema tiene una energía máxima finita Emax, es decir

que está confinado a moverse en la región del espacio R2 donde se satisface V (x)<

E < Emax. Si el potencial es creciente en ambas direcciones x →±∞, esto implica la

existencia de los vínculos unilaterales

x− < x < x+

A medida que el potencial se haga más empinado, creciendo más rápidamente cuando

nos alejamos hacia la izquierda o hacia la derecha del mínimo, el sistema estará cada

vez más limitado en su movimiento en la dirección x, obteniéndose en el límite el vínculo

bilateral

x = xmin

En otras palabras, el sistema reduce su dimensión, estando ahora confinado a moverse

solamente en y.

Veamos ahora si podemos encontrar un lagrangiano efectivo para describir el movi-

miento en la variable y. Para esto escribimos las ecuaciones de movimiento, en la

forma

mẍ =−∂xV (x)

mÿ = 0

La condición x = xmin resuelve la primera, mientras que la segunda se puede obtener

del lagrangiano efectivo

Leff =
1
2

mẏ2

Este lagrangiano es, a menos de una constante que no contribuye a las ecuaciones de

movimiento, el que se hubiera obtenido de truncar el lagrangiano inicial reemplazando

directamente en él la condición de vínculo x = xmin.

Este resultado puede parecer trivial, ya que la dimensión extra no juega ningún rol en la discusión

y estamos en realidad tratando con un problema unidimensional. Veremos a continuación un caso

más general genuinamente bidimensional.
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Figura 11.2.2: Vinculos en dos dimensiones. Vemos las curvas de nivel de un potencial que depende de

una sola coordenada cartesiana (izquierda), y de uno que depende de ambas coordenadas

cartesianas, pero más fuertemente de una que de la otra (derecha). Si el pozo de potencial es

lo bastante marcado, el movimiento se producirá entre las lineas continuas.

Ejemplo: partícula dos dimensiones, caso más general

La construcción del ejemplo anterior se puede generalizar al caso en el que el potencial

depende de las dos variables, pero mucho más fuertemente de una (digamos x) que

de la otra. Comenzamos con el lagrangiano

L =
1
2

m
(
ẋ2 + ẏ2)−V (x,y)

Asumiendo que el potencial crece en ambas direcciones de la variable x, la condición

de energía acotada V (x,y)< E < Emax puede ser resuelta de la siguiente forma

x−(y)< x < x+(y)

donde ahora x±(y) son funciones de la variable y que corresponden a las curvas de nivel

V (x±(y),y) = Emax. La condición de que el potencial dependa mucho más fuertemente

de x que de y se traduce en que las funciones x±(y) son muy suaves, cambiando

perceptiblemente en una distancia ∆y que es mucho mayor que ∆x(y) = x+(y)− x−(y).

De nuevo, los vínculos a izquierda y derecha se irán acercando a medida que el poten-

cial se hace más empinado en la dirección x, resultando finalmente en el confinamiento

del sistema, que sólo podrá moverse en una dimensión, a lo largo del vínculo bilateral

x = xmin

Escribiendo las ecuaciones de movimiento que se obtienen de nuestro lagrangiano

mẍ =−∂xV (x,y)

mÿ =−∂yV (x,y)
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Figura 11.2.3: Vinculos en dos dimensiones. Vemos las curvas de nivel de un potencial que depende del

radio polar (izquierda), y de uno que depende también del ángulo, pero más débilmente que

del radio (derecha). Si el pozo de potencial es lo bastante marcado, el movimiento se producirá

entre las lineas continuas.

Podemos reemplazar en ellas el vínculo, para obtener

0 =−∂xV (xmin,y)

mÿ =−∂yV (xmin,y)

Vemos que la primera es la condición de mínimo en la dirección x y se satisface

automáticamente, mientras que la segunda se puede obtener a partir del lagrangiano

Leff =
1
2

mẏ2 −V (xmin,y)

Nuevamente, este lagrangiano coincide con lo que se obtiene de reemplazar directa-

mente en el lagrangiano original la condición de vínculo.

Nótese que en los cálculos anteriores hemos supuesto que las dos curvas x±(y) se

juntan en una recta x = xmin cuando el potencial se hace más empinado. Este no tiene

por qué ser el caso, podríamos tener una condición de vínculo que también está dada

por una curva x = xmin(y). Para entenderlo mejor podemos cambiar coordenadas, como

haremos en el ejemplo que sigue.

Ejemplo: partícula en dos dimensiones en coordenadas polares

Supongamos una partícula en el plano descripta en coordenadas polares, con un

potencial que depende solo del radio

L =
1
2

m
(
ṙ2 + r2

θ̇
2)−V (r)

Si el potencial tiene un mínimo en r = rmin, el hecho de que siempre habrá una cantidad

finita de energía E < Emax hace que el sistema se mueva en una región acotada por
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el vínculo unilateral r− < r < r+. Cuando el potencial sea muy empinado, el sistema

deberá satisfacer el vínculo bilateral r = rmin. Esta restricción establece una curva en el

plano, a diferencia de las rectas de los ejemplos anteriores.

Escribiendo las ecuaciones de movimiento

mr̈ =−∂r

(
V (r)− 1

2
mr2

θ̇
2
)

d
dt

(
mr2

θ̇
)
= 0

podemos evaluarlas en un valor constante del radio r = rsol para verificar si son consis-

tentes con una condición de vínculo

0 =−∂r

(
V (r)− 1

2
mr2

θ̇
2
)∣∣∣∣

r=rsol

d
dt

(
mr2

solθ̇
)
= 0

La primera ecuación es una condición de mínimo que determina rsol, pero modificada

con un término rotacional que contiene θ̇ 2. Para ver los efectos de este término,

desarrollamos el miembro derecho alrededor del mínimo de V (r), que habíamos llamado

rmin, obteniendo

0 = (mθ̇
2 −V ′′(rmin))(rsol− rmin)+mrminθ̇

2

En esta ecuación es importante notar que, dado que la energía está acotada, también lo

estará su componente rotacional, proporcional a θ̇ 2. Esto significa que para un potencial

lo bastante empinado, el término que contiene la derivada segunda V ′′(rmin) domina la

ecuación

0 =−V ′′(rmin)(rsol− rmin)

Lo que se resuelve con rsol = rmin. En otras palabras, el sistema está confinado en el

mínimo del potencial, y el término rotacional no altera este hecho.

La segunda ecuación de movimiento se puede obtener del lagrangiano para una

partícula que se mueve en un círculo

Leff =
1
2

mr2
minθ̇

2

Nuevamente, este lagrangiano se obtiene de reemplazar directamente la condición

r = rmin en el lagrangiano original.

Como en el ejemplo anterior, podría existir una dependencia explícita del potencial

en la variable adicional, en este caso θ , siempre que sea mucho más suave que la

dependencia en la variable vinculada, en este caso r. Si así fuera, siguiendo pasos

completamente análogos, obtendríamos un lagrangiano efectivo

Leff =
1
2

mr2
minθ̇

2 −V (rmin,θ)

Que describe un problema unidimensional.
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Ejercicio:

Estudie el caso de un cuerpo que desciende por un plano inclinado. El lagrangiano

será

L =
1
2

m
(
ẋ2 + ẏ2)−mgy−V (y cosθ − x sinθ)

Además del término gravitacional, el potencial tiene un término adicional que es el que

provee la condición de vínculo, creciendo muy rápidamente en la dirección transversal

al plano ¿Cuál es la fuerza que se deriva de este potencial? ¿Se trata de un vínculo

unilateral o bilateral?

Escriba un lagrangiano efectivo para describir el sistema unidimensional.

Ejercicio:

Estudie el caso de un péndulo plano. El lagrangiano se puede escribir en la forma

L =
1
2

m
(
ẋ2 + ẏ2)−mgy−V (x2 + y2)

En este sistema, la longitud de la cuerda se mantiene invariante, lo que significa que

además del término gravitacional el potencial tiene un término con un crecimiento muy

marcado en la dirección en la que se estira la cuerda ¿cómo se llama la fuerza que se

obtiene a partir de tal potencial?

Reemplace la condición de vínculo en el lagrangiano, para obtener un lagrangiano

efectivo capaz de describir el sistema truncado.

La lección de los ejemplos anteriores es que, cuando el potencial presenta un mínimo muy marcado

a lo largo de alguna coordenada, podemos reemplazar directamente en el lagrangiano el valor

de la misma en el mínimo. El lagrangiano efectivo resultante nos proporcionará ecuaciones de

movimiento para las coordenadas que restan, que son las mismas que las que hubiéramos obtenido

del lagrangiano original.

Esta idea se puede extender a un caso general. Escribamos el lagrangiano para un sistema de

N partículas en términos de las 3N coordenadas cartesianas~rn que parametrizan el espacio de

configuración R3N . Éste toma la forma

L = K(~̇r2
n)−V (~rn)

La energía del sistema está acotada, y por lo tanto se cumple que V (~rn)< E < Emax. Al igual que

en los ejemplos, esto establece una región dentro de R3N en la cual se puede mover el sistema,

es decir un vínculo unilateral.

Supongamos ahora que, dentro de la región determinada por el vínculo unilateral, el potencial crece

muy rápidamente al alejarnos de alguna hipersuperficie de dimensión D, sobre la cual tiene además

una variación suave. Entonces podemos limitarnos a describir el movimiento exclusivamente a
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lo largo de esa hipersuperficie, dado que prácticamente no habrá movimiento en las direcciones

transversales. Como cualquier hipersuperficie D-dimensional embebida en R3N , tal hipersuperficie

de vínculo estará descripta por un conjunto de restricciones de la forma

fl(~rn) = cl constante, con l ∈ {D+1, . . . ,3N}

Este tipo de restricciones se conocen como vínculos holonómicos. Notemos que, en presencia de

estos vínculos holonómicos, el espacio de configuración original R3N se redujo a una hipersuperficie

C ⊂R3N de dimensión D ≤ 3N. La misma puede tener una forma y topología arbitrarias, por lo que

se suele hablar de una variedad de configuración C .

Ahora bien, sabemos que podemos describir el sistema en términos de un conjunto cualquie-

ra de coordenadas generalizadas {qi} con i ∈ {1, . . . ,3N}, las cuales podemos elegir a nuestra

conveniencia. En términos de ellas, el lagrangiano se escribe

L = K(q̇i,qi)−V (qi)

Una elección particularmente útil de las coordenadas generalizadas es la que se conoce como

coordenadas adaptadas. Se define según la condición

qk = qk(~rn) arbitrario para k ∈ {1, . . . ,D}

ql = fl(~rn) para l ∈ {D+1, . . . ,3N}

Se dice que estas coordenadas resuelven los vínculos. En efecto, al movernos a lo largo de las

coordenadas qk dejando las demás fijas el potencial varía suavemente, mientras que a lo largo

de ql existe un mínimo marcado en los valores ql = cl y la dependencia del potencial al alejarnos

es mucho más fuerte. Esto implica que podemos dejar fijos los valores de tales coordenadas en

el mínimo de potencial ql = cl . De manera análoga a los ejemplos de más arriba, el lagrangiano

efectivo definido según

Leff = K(q̇k, q̇l = 0,qk,ql = cl)−V (qk,ql = cl)

dará una descripción del movimiento consistente con las ecuaciones del lagrangiano original.

Nota:

Este procedimiento es exactamente el que seguimos, sin hacerlo explícito, cuando

hablamos del cuerpo rígido.

En efecto, las coordenadas a lo largo de las cuales el potencial presenta mínimos

marcados (y que por lo tanto podemos eliminar de nuestra descripción fijándolas a un

valor constante) son las distancias entre las partículas {ql}= {l1, l2, l3, l1n, l2n, l3n}. Esto

constituye una realización física de la idea de rigidez. Por otro lado, aquéllas a lo largo

de las cuales el potencial presenta una dependencia suave resultan ser los grados de

libertad del cuerpo rígido {qi}= {~r1,φ ,θ ,ψ}.

El espacio de configuración resultante de fijar las distancias está dado por la variedad

C = R3 ×SO(3)⊂ R3N y tiene dimensión D = 6.
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Los vínculos holonómicos descriptos hasta aquí se conocen como vínculos esclerónomos, ya que

las restricciones fl(~rn) no dependen del tiempo. Sin embargo y como clarificarán los siguientes

ejemplos, el tratamiento se puede extender de manera más o menos inmediata al caso donde

existe dependencia temporal.

Ejemplo: partícula en una dimensión, con fuerza monogénica

Sea una partícula en una dimensión sometida a una fuerza monogénica, es decir una

fuerza que se deriva de un potencial dependiente del tiempo. El lagrangiano se escribe

L =
1
2

mẋ2 −V (x, t)

La ecuación de movimiento correspondiente será

mẍ =−∂xV (x, t)

Nos preguntamos si, al igual que sucedía cuando la fuerza era conservativa, existirá

una solución a las ecuaciones de movimiento donde la partícula esté confinada al punto

x = xmin donde el potencial tiene su mínimo. En ese caso debería cumplirse

0 =− ∂xV (x, t)|x=xmin

Dado que el potencial depende del tiempo, al resolver esta condición de mínimo

obtenemos una función xmin(t). Esto implica que en principio ẍmin(t) 6= 0, por lo que la

condición de que la partícula esté confinada al mínimo de potencial no satisface la

ecuación de movimiento.

Sin embargo, aún nos falta imponer la condición de que el mínimo sea muy marcado

en todo instante durante el movimiento. Para hacer esto, usamos la regla de la función

implícita, escribiendo las derivadas temporales como

ẋmin(t) =− ∂t∂xV (x, t)
∂ 2

x V (x, t)

∣∣∣∣
x=xmin(t)

⇒ ẍmin(t) =
1

∂ 2
x V

(· · ·)

Donde vemos que cuando la derivada segunda en el denominador es lo bastante

grande, como sucede para un potencial muy empinado, se cumple que ẍmin(t)≈ 0. Es

decir que x = xmin(t) resuelve las ecuaciones de movimiento en este límite.

Esto demuestra que en el caso de una fuerza monogénica, si el potencial tiene un

mínimo muy marcado durante toda la duración del movimiento, entonces el sistema

está confinado al mínimo del potencial.

Ejercicio: partícula en dos dimensiones, con potencial unidimensional monogénico

Extienda el ejemplo anterior al caso de una partícula en dos dimensiones, que se

mueve bajo la influencia de una fuerza monogénica con potencial unidimensional. El

lagrangiano será

L =
1
2

m
(
ẋ2 + ẏ2)−V (x, t)
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Usando un razonamiento análogo al del ejemplo previo, demuestre que el movimiento

se confina al mínimo del potencial x = xmin(t). Pruebe que en ese caso se puede

reemplazar el lagrangiano por la forma efectiva

Leff =
1
2

mẏ2

la cual se obtiene al reemplazar el vínculo directamente en el lagrangiano original.

Ejercicio: partícula en dos dimensiones, caso más general monogénico

Generalice el resultado del ejercicio anterior al caso con lagrangiano

L =
1
2

m
(
ẋ2 + ẏ2)−V (x,y, t)

Asumiendo que durante toda la duración del movimiento la dependencia del potencial

en la variable y es mucho más suave que la dependencia en x, y que el potencial tiene

un mínimo marcado en esta última dirección en x = xmin(t), pruebe que las ecuaciones

de movimiento se pueden obtener de la forma efectiva

Leff =
1
2

mẏ2 −V (xmin(t),y, t)

El ejemplo y los ejercicios anteriores deberían dejar en claro que el razonamiento que hicimos más

arriba para el caso de fuerzas conservativas se puede generalizar inmediatamente para fuerzas

monogénicas. Comenzamos con un lagrangiano

L = K(~̇r2
n)−V (~rn, t)

Si durante toda la duración del movimiento el potencial varía suavemente sobre una hipersuperficie

de dimensión D, mientras que crece muy rápidamente al alejarnos de ella, el movimiento se confina

a tal hipersuperficie. Podemos repetir el razonamiento que hicimos antes, teniendo en cuenta que

en este caso las condiciones de vínculo holonómico

fl(~rn, t) = cl constante, con l ∈ {D+1, . . . ,3N}

serán dependientes del tiempo. Este tipo de vínculos holonómicos con dependencia temporal se

denominan vínculos reónomos.

Nuevamente podemos elegir coordenadas adaptadas, con la única diferencia de que el cambio de

variables será ahora dependiente del tiempo. La condición de mínimo ql = cl se puede reemplazar

entonces en el lagrangiano resultante, obteniendo un lagrangiano efectivo

Leff = K(q̇k, q̇l = 0,qk,ql = cl)−V (qk,ql = cl , t)

que resultará en las mismas ecuaciones de movimiento.
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11.2.2 Vínculos no holonómicos

Además de los vínculos holonómicos que discutimos en la sección anterior, existe un tipo diferente

de vínculos que no se pueden expresar como un conjunto de restricciones (tal vez dependientes

del tiempo) en las coordenadas~rn de las partículas que forman el sistema. Para entender de qué

estamos hablando, veamos primero un ejemplo de este tipo de vínculos.

Ejemplo: efecto Hall

El efecto Hall es un estado de la materia que aparece cuando ponemos partículas

cargadas en un campo magnético intenso.

Para tener una imagen sencilla de este problema, supongamos que tenemos una

partícula que se mueve en tres dimensiones bajo la influencia de un campo magnético

uniforme en la dirección z. El potencial vector que genera dicho campo estará dado por

~A = cBx ǰ

De modo tal que (~∇×~A)/c= Bǩ. El lagrangiano para una partícula de carga e tendrá la

forma que discutimos en la sección 2.2.3, es decir

L =
1
2

m(ẋ2 + ẏ2 + ż2)− e(Φ(x,y,z)−Bxẏ)

donde Φ es el potencial eléctrico. Las ecuaciones de movimiento resultantes se leen

mẍ = e (Ex −Bẏ) mÿ = e (Ey −Bẋ) mz̈ = eEz

Donde Ea = −∂aΦ es el campo eléctrico. Ahora bien, si suponemos que el campo

magnético es muy intenso, de modo tal que durante todo el movimiento se cumple que

ẍ/ẏ � eB/m y ÿ/ẋ � eB/m, estas ecuaciones se pueden reemplazar por

0 = e (Ex −Bẏ) 0 = e (Ex +Bẋ) mz̈ = eEz

Dado que las dos primeras ecuaciones no contienen derivadas segundas, se pueden

considerar como vínculos que incluyen a las velocidades. Este es el primer ejemplo de

un vínculo no holonómico. En este caso particular, los vínculos implican que la carga

se puede mover solamente donde hay un campo eléctrico no nulo, lo que normalmente

sucede en los bordes de una muestra material.

Podríamos intentar resolver los vínculos y reemplazarlos en el lagrangiano, como hici-

mos más arriba para el caso de los vínculos holonómicos. Eso nos daría el lagrangiano

efectivo

Leff
?
=

1
2

mż2 +
mc2

2B2

(
E2

x +E2
y
)
− e(Φ(x,y,z)−Ex x)

Sin embargo, los nuevos términos con las componentes del campo eléctrico actúan

como un término extra en el potencial, resultando en que la ecuación de movimiento

para z no corresponde a la que se obtiene del lagrangiano original. Por lo tanto, el

método de evaluar el lagrangiano en los vínculos no funciona en el caso de vínculos

no holonómicos.
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Ejemplo: rodadura en una dimensión

Supongamos que tenemos una rueda de radio R en que se mueve en una dimensión.

El estado de la rueda está caracterizado por su posición en la recta x y por el ángulo φ

que ha rotado respecto de la dirección vertical en la dirección contraria a las agujas del

reloj. Estas variables satisfacen el vínculo de rodadura sin deslizamiento, que es una

restricción diferencial de la forma

dx =−Rdφ

Dividiendo por dt esto se puede reescribir en términos de las velocidades

ẋ+Rφ̇ = 0

lo que claramente constituye un vínculo no-holonómico.

En este caso particular unidimensional, el vínculo no holonómico se puede integrar,

obteniendo la expresión

x− x0 +R(φ −φ0) = 0

que tiene todo el aspecto de un vínculo holonómico, más allá de que incluye constantes

de integración. Sin embargo, esto no se puede extender al caso de una rueda que gira

sobre una superficie bidimensional, como veremos en el ejemplo que sigue.

Ejemplo: rodadura en dos dimensiones

En el caso de una rueda de radio R que describe una curva sobre un plano, el vínculo

no holonómico no se puede integrar. En efecto, la distancia recorrida por la rueda debe

satisfacer la restricción diferencial

dl =−Rdφ

lo que se puede reescribir como√
dx2 +dy2 =−Rdφ

En términos de las velocidades esto toma la forma√
ẋ2 + ẏ2 +Rφ̇ = 0

Este vínculo no se puede integrar para obtener una relación entre las coordenadas,

por lo que es inherentemente no holonómico.

Generalizando los ejemplos, cuando el sistema está sometido a vínculos no holonómicos habrá

restricciones sobre su su movimiento que involucran a las velocidades. Estas se pueden escribir

en la forma

fl(~rn,~̇rn, t) = constante, con l ∈ {D+1, . . . ,3N}
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En algunos casos particulares, estas condiciones de vínculo se pueden integrar y los vínculos se

transforman en vínculos de tipo holonómico como los estudiados anteriormente. Pero en el caso

general, al ser dependientes de las velocidades, estos vínculos no definen una hipersuperficie

de dimensión D en el espacio de configuración original R3N . Por lo tanto, no se pueden resolver

usando coordenadas adaptadas, es decir que no pueden incorporarse en el Lagrangiano de

manera sencilla.

11.2.3 Multiplicadores de Lagrange

Hemos visto que los vínculos holonómicos, tanto los esclerónomos como los reónomos, se pueden

tratar utilizando coordenadas adaptadas, para las cuales los vínculos se reducen a fijar el valor

de algunas de ellas. En este caso, las ecuaciones de movimiento se pueden obtener a partir

de un lagrangiano efectivo que se obtiene de aplicar el vínculo directamente en el lagrangiano

del sistema. Sin embargo, vimos también que existen vínculos más generales conocidos como

no holonómicos, para los cuales el método de las coordenadas adaptadas no funciona. En esta

sección reexaminaremos el problema de los vínculos desde una óptica más amplia, con el objeto

de obtener un tratamiento más general.

Ejemplo: péndulo esférico

La segunda ley de Newton para un péndulo en tres dimensiones se escribe

mẍ = Tx mÿ = Ty mz̈ = Tz −mg

donde hemos llamado ~T = (Tx,Ty,Tz) a la tensión de la soga de la que cuelga el péndulo.

No conocemos la forma explícita de ~T como función de las coordenadas, solo sabemos

que toma los valores que deba tomar para que se cumpla la restricción√
x2 + y2 + z2 = l

donde hemos supuesto que la cuerda es inextensible y tiene longitud l. Esto implica en

particular que se trata de una fuerza que apunta en la dirección de la cuerda, por lo

que podemos escribir

~T = λ ř = λ~∇(
√

x2 + y2 + z2 − l)

donde λ es una cantidad desconocida, y en la segunda igualdad notamos que el versor

ř se puede obtener como el gradiente de la condición de vínculo. Con esto tenemos

que las ecuaciones a resolver son

mẍ = λ∂x(
√

x2 + y2 + z2 − l) mÿ = λ∂y(
√

x2 + y2 + z2 − l)

mz̈ = λ∂z(
√

x2 + y2 + z2 − l)−mg 0 =
√

x2 + y2 + z2 − l

Se trata de cuatro ecuaciones para determinar cuatro funciones desconocidas del

tiempo, a saber las coordenadas {x,y,z} y la nueva magnitud λ . Es interesante remarcar
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que estas ecuaciones se pueden obtener del lagrangiano

L =
1
2

m(ẋ2 + ẏ2 + ż2)−mgz+λ (
√

x2 + y2 + z2 − l)︸ ︷︷ ︸
−V~T

Donde las ecuaciones de Lagrange para {x,y,z} resultan en las ecuaciones de mo-

vimiento, mientras que la ecuación de Lagrange para λ nos devuelve el vínculo. En

este lagrangiano, los dos primeros términos corresponderían al problema en ausencia

de vínculos, mientras que el término adicional, proporcional a la nueva variable λ , se

puede asociar a un potencial V~T para la tensión ~T .

¿Cuáles fueron los pasos cruciales que nos permitieron llegar al lagrangiano? El

primero fue identificar la dirección de la tensión, lo que redujo el número de magnitudes

independientes a determinar con nuestras ecuaciones. Y el segundo fue notar que

dicha dirección coincide con la del gradiente de la condición de vínculo, lo que nos

permitió darle una forma concreta a nuestro lagrangiano.

Por supuesto que en este caso el vínculo es holonómico y esclerónomo, por lo que

podríamos haber usado el método de las coordenadas adaptadas, pasando a coor-

denadas esféricas {r,θ ,φ} y luego fijando r = l directamente en el lagrangiano del

problema. Esto se puede hacer incluso sin conocer la forma explícita de V~T , ya que al

evaluarlo en el vínculo sabemos que tomará su valor mínimo, y por lo tanto lo podemos

reemplazar por una constante.

Ejercicio: péndulo forzado

Repita el análisis anterior para el caso de un péndulo colgado de un soporte móvil que

está a una altura zsop(t). En este caso la restricción de que la soga es inextensible se

ve modificada según√
x2 + y2 +(z− zsop(t))2 = l

Convénzase de que también en este caso la tensión es proporcional al gradiente de la

condición de vínculo

~T = λ~∇(
√

x2 + y2 +(z− zsop(t))2 − l)

Demuestre que al reemplazar esta condición en la segunda ley de Newton se obtie-

nen tantas ecuaciones como magnitudes desconocidas, que se pueden derivar del

lagrangiano

L =
1
2

m(ẋ2 + ẏ2 + ż2)−mgz+λ (
√

x2 + y2 +(z− zsop(t))2 − l)

Nótese que seguimos en presencia de un vínculo holonómico, en este caso reónomo,

para el cual podríamos haber llevado adelante la técnica de las coordenadas adaptadas

de las secciones previas, incluso sin conocer explícitamente la forma del potencial que

da origen a la tensión.
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Ejemplo: planos inclinados y poleas

Supongamos que tenemos un bloque de masa mB que desliza sin fricción a lo largo de

un plano inclinado. El bloque está atado a una cuerda que pasa por una polea sin masa

en la parte superior del plano y de la cual cuelga una pesa de masa mP. Poniendo el

origen de coordenadas en la polea y el eje y en la dirección vertical, tenemos que la

segunda ley de Newton para el bloque y la pesa toma la forma

mBẍB = Nx −Tx mBÿB = Ny +Ty −mBg mPÿP = T −mPg

Donde ~T = (−Tx,Ty) es la tensión de la soga y ~N = (Nx,Ny) es la normal del plano. La

condición de que el bloque se mueva sobre el plano que forma un ángulo θ con la

horizontal se puede escribir como tanθ = yB/xB. Esto toma la forma de un vínculo

xB sinθ − yB cosθ = 0

Por otro lado, la condición de soga inextensible se transforma en el vínculo√
x2

B + y2
B − yP = l

Para la fuerza normal, tenemos que

~N = λN(sinθ ,−cosθ) = λN~∇B(xB sinθ − yB cosθ)

donde λN es una nueva magnitud desconocida, que debe ser negativa para que la

fuerza tenga el sentido correcto. En la segunda igualdad hemos notado que, una vez

más, la fuerza tiene la dirección del gradiente de la condición de vínculo.

En cuanto a la tensión, podemos escribir

~T = λT (cosθ ,sinθ) = λT~∇B(
√

x2
B + y2

B − yP − l)

donde en la segunda igualdad usamos que cosθ = xB/
√

x2
B + y2

B y sinθ = yB/
√

x2
B + y2

B,

y la nueva magnitud λT debe ser negativa para que el sentido de la fuerza sea el

correcto. Nótese que también se cumple

T =−λT = λT ∂yP(
√

x2
B + y2

B − yP − l)

Una vez más, las fuerzas que entran en la segunda ley de Newton con el objeto de

garantizar los vínculos resultan ser proporcionales a los gradientes de los mismos.

Con todo lo anterior, podemos escribir el conjunto de ecuaciones en la forma

mBẍB = λN∂xB(xB sinθ − yB cosθ)+λT ∂xB(
√

x2
B + y2

B − yP − l)

mBÿB = λN∂yB(xB sinθ − yB cosθ)+λT ∂yB(
√

x2
B + y2

B − yP − l)−mBg

mPÿP = λT ∂yP(
√

x2
B + y2

B − yP − l)−mPg

xB sinθ − yB cosθ = 0
√

x2
B + y2

B − yP = l
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donde hay cinco ecuaciones para las cinco magnitudes desconocidas dadas por las

coordenadas del bloque {xB,yB}, de la polea yP y las nuevas magnitudes {λT ,λB}.

Estas ecuaciones se pueden obtener del lagrangiano

L =
1
2

mPẏ2
P +

1
2

mB(ẋ2
B + ẏ2

B)−mPgyP −mBgyB+

+λT (
√

x2
B + y2

B − yP − l)+λN(xB sinθ − yB cosθ)

Nótese que esto corresponde al lagrangiano que tendríamos en ausencia de vínculo,

más los términos proporcionales a los vínculos, en los que introdujimos una nueva

variable por cada vínculo. Las ecuaciones de Lagrange para {xB,yB} dan las ecuaciones

de movimiento del bloque, aquéllas para yP dan las de la polea, mientras que las que

corresponden a λT y λN devuelven los vínculos.

Ejemplo: rodadura en una dimensión

Para intentar generalizar lo anterior al caso de vínculos no holonómicos, comencemos

con el ejemplo de una rueda que corre a lo largo de un eje. Podemos escribir sus

ecuaciones de movimiento en la forma

mẍ = Fx −V ′(x)

Iφ̈ = τ

donde Fx es la fuerza de roce estático entre la rueda y la superficie, τ es torque que

actúa sobre la rueda, siendo I su momento de inercia, y hemos supuesto que hay una

fuerza externa cuyo potencial es V (x) que actúa sobre el centro de la rueda. El vínculo

de rodadura establece que

ẋ+R φ̇ = 0

o en su forma integrada

x− x0 +R(φ −φ0) = 0

No sabemos nada de Fx, más allá de que debe tomar los valores necesarios para ga-

rantizar el vínculo. Siguiendo los razonamientos anteriores, proponemos el lagrangiano

L =
1
2

mẋ2 +
1
2

Iφ̇
2 −V (x)+ λ̃ (x− x0 +R(φ −φ0))

Donde agregamos al lagrangiano libre un término proporcional a la condición de vínculo,

con una nueva variable λ̃ . La ecuación de Lagrange de esta última nos devuelve el

vínculo, mientras que las ecuaciones para x y φ implican que

Fx = λ̃ ∂x (x− x0 +R(φ −φ0)) = λ̃

τ = λ̃ ∂φ (x− x0 +R(φ −φ0)) = λ̃R = FxR
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Este lagrangiano provee las ecuaciones de movimiento correctas. Sin embargo, está

escrito en términos de la forma integrada del vínculo, lo que no nos permite generalizar

para vínculos no integrables. Para resolver este problema, podemos redefinir λ̃ =−λ̇

en el lagrangiano,

L =
1
2

mẋ2 +
1
2

Iφ̇
2 −V (x)− λ̇ (x− x0 +R(φ −φ0))

lo que no altera la forma de Fx, pero ahora la ecuación de lagrange de λ devuelve el

vínculo en su forma no integrada.

d
dt

(
∂L
∂ λ̇

)
=−(ẋ+Rφ̇) = 0

Es fácil ver que las mismas ecuaciones de movimiento se obtienen del lagrangiano en

el que incluimos el vínculo multiplicando por una función desconocida λ , al igual que

hacíamos para el caso holonómico

L =
1
2

mẋ2 +
1
2

Iφ̇
2 −V (x)+λ (ẋ+Rφ̇)

que difiere del anterior en una derivada total. En efecto, calculando las ecuaciones de

Lagrange de este lagrangiano obtenemos las expresiones

Fx =− d
dt

(
λ

∂

∂ ẋ
(ẋ+Rφ̇)

)
=−λ̇

τ =− d
dt

(
λ

∂

∂ φ̇
(ẋ+Rφ̇)

)
=−λ̇R = FxR

Es decir que la fuerza de vínculo se obtiene a partir de un potencial dependiente de las

velocidades, que es proporcional a la condición de vínculo. Tenemos entonces tres

ecuaciones (las dos ecuaciones de movimiento y el vínculo) para tres variables (las

coordenadas {x,φ} y la fuerza Fx).

De los ejemplos anteriores debemos aprender las siguientes propiedades generales

Cada vez que hay vínculos, aparecen nuevas fuerzas cuya función es garantizar que los

vínculos se cumplan. En los problemas de los cursos básicos estas fuerzas corresponden a

tensiones, normales, fuerzas de roce estático, etc. Hay una de estas fuerzas de vínculo por

cada uno de los vínculos.

Estas fuerzas se obtienen de un potencial que es proporcional a cada vínculo, con un factor de

proporcionalidad que es una magnitud desconocida. En el caso de vínculos no holonómicos,

éste funciona como un potencial dependiente de las velocidades.

Con el mencionado potencial se puede construir un lagrangiano. Las ecuaciones de Lagrange

para los factores de proporcionalidad resultan en los vínculos.

A la luz de los ejemplos anteriores, analicemos el caso general. Supongamos que tenemos un

conjunto de N partículas con posiciones~rn, que satisfacen los vínculos

fl(~rn,~̇rn, t) = constante, con l ∈ {D+1, . . . ,3N}
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La segunda ley de Newton para este sistema se escribe como

d~pn

dt
= ~Fn +~Fvinc

n

donde hemos separado explícitamente la fuerza de vínculo. De acuerdo a lo que vimos en los

ejemplos anteriores, esta fuerza se puede escribir en la forma

Fvinc
n = λl

∂ fl

∂~rn
− d

dt

(
λl

∂ fl

∂~̇rn

)
Donde hemos insertado nuevas magnitudes desconocidas λl , una por cada uno de los vínculos,

que se denominan multiplicadores de Lagrange.

Si suponemos que el resto de la fuerza ~F se obtiene a partir de un potencial V (~rn,~̇rn, t), entonces

podemos escribir un lagrangiano en la forma

L = K(~̇r2
n)−V (~rn,~̇rn, t)+λl fl(~rn,~̇rn, t)

Las ecuaciones de Lagrange que se obtienen de este lagrangiano para las variables ~rn nos

devuelven la segunda ley de Newton para cada una de las partículas del problema. Por otro lado,

aquéllas que se obtienen a partir de los multiplicadores de Lagrange resultan en los vínculos.

El conteo de variables también funciona: cada vínculo suprime un grado de libertad de los 3N

que tiene originalmente el sistema, y cada multiplicador de Lagrange lo restituye. Tenemos

3N ecuaciones de movimiento y 3N −D vínculos, para 3N coordenadas cartesianas y 3N −D

multiplicadores de Lagrange.

Por supuesto que podríamos escribir el lagrangiano de arriba en coordenadas adaptadas para

eliminar los vínculos holonómicos, quedándonos solamente con multiplicadores para los no holonó-

micos. Esto pone de manifiesto que el lagrangiano está definido sobre un espacio de configuración

C que ya no es R3N sino una variedad arbitraria.

Ejercicio:

Escriba el lagrangiano para una partícula cargada sometida a un campo magnético en

la dirección x y un campo eléctrico en la dirección z, suponiendo que la partícula está

unida al origen por medio de una varilla rígida.

Resuelva primero el problema utilizando multiplicadores de Lagrange. Escriba las

ecuaciones de movimiento e identifique la fuerza que realiza la varilla.

Luego resuelva el problema utilizando el método de coordenadas adaptadas, es decir

usando coordenadas esféricas y fijando el valor del radio a la longitud de la varilla.

Obtenga las ecuaciones de movimiento.

¿Cuál es la relación entre las ecuaciones de movimiento que se obtienen en cada

caso?
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Podríamos preguntarnos qué característica particular tienen las fuerzas de vínculo que nos permite

escribirlas en la forma de arriba. Podríamos recorrer nuevamente a los ejemplos, y notaríamos

que en todos los casos tales fuerzas no realizan trabajo para un desplazamiento muy rápido. Para

ahorrar tiempo, vamos a probarlo para el caso general, usando la definición de fuerza de vínculo

que dimos más arriba y que se aplica a todos los ejemplos que analizamos. Para esto escribimos

dW = ~Fvinc
n ·d~rn

vemos que

dW =

(
λl

∂ fl

∂~rn
− d

dt

(
λl

∂ fl

∂~̇rn

))
·d~rn

Integrando por partes en el segundo término, tenemos

dW = λl

(
∂ fl

∂~rn
·d~rn +

∂ fl

∂~̇rn
·d~̇rn

)
− d

dt

(
λl

∂ fl

∂~̇rn
·d~rn

)
Si el desplazamiento es instantáneo podemos descartar el último término, resultando en

dW = λl

(
∂ fl

∂~rn
·d~rn +

∂ fl

∂~̇rn
·d~̇rn

)
= λl d fl = 0

donde en la última igualdad hemos usado el hecho de que los vínculos se satisfacen durante el

desplazamiento, por lo que d fl = 0.

Esto se conoce como principio de D’Alembert de los trabajos virtuales y dice que las fuerzas de

vínculo no realizan trabajo en un desplazamiento instantáneo.

11.3 Resumen

En esta clase estudiamos el origen físico de los vínculos, y la forma de incorporarlos al tratamiento

lagrangiano.

Vimos que cuando hay vínculos holonómicos reónomos o esclerónomos, podemos elegir coorde-

nadas adaptadas, que resuelven los vínculos simplemente fijando el valor de algunas de ellas.

Vimos también que cuando hay vínculos no holonómicos, el método de las coordenadas adaptadas

no funciona.

Aprendimos la técnica de los multiplicadores de Lagrange, que permite escribir un lagrangiano

para un sistema vinculado, sean los vínculos holonómicos o no. Esta construcción tiene la ventaja

de permitirnos identificar las fuerzas de vínculo.

Junto con el análisis de las truncaciones que hicimos la clase previa, los presentes resultados

demuestran que los sistemas mecánicos pueden moverse sobre una variedad de configuración C

cualquiera recorrida por las coordenadas generalizadas {qi}. Con esto, trascendemos nuestra

hipótesis inicial de un sistema de N partículas que tenía C = R3N , construyendo así la primera

generalización de los sistemas mecánicos que veremos en este curso.





12. Pequeñas oscilaciones

12.1 Objetivos

Frédéric Chopin

Aprendimos la clase pasada que cuando existe en el

potencial un pozo profundo y marcado, entonces se pue-

de simplificar la descripción del sistema mediante una

condición de vínculo. El sistema se mueve en las direccio-

nes en las que el potencial varía suavemente, confinado

dentro de la hipersuperficie determinada por el fondo del

pozo.

En esta clase vamos a explorar qué pasa cuando la

condición de vínculo se relaja un poco, es decir cuando

permitimos que el sistema realice pequeñas oscilaciones

que lo alejan ligeramente del fondo del pozo de potencial.

Una vez más, analizaremos primero algunos casos muy

simples, para ganar algo de intuición que nos permita

tratar el caso general.

12.2 Oscilaciones en sistemas autónomos

Un sistema autónomo es uno donde el lagrangiano no depende explícitamente del tiempo. En

particular esto implica que todas las fuerzas que actúan sobre las partículas que lo componen son

conservativas, y que todos los vínculos que se impongan sobre el sistema son esclerónomos.



170 Capítulo 12. Pequeñas oscilaciones

Esta caracterización involucra una clase muy general de sistemas físicos. En esta sección, vamos

a estudiar cómo se describen sus pequeñas oscilaciones. Comenzaremos con ejemplos en una y

dos dimensiones, y luego estudiaremos el caso general.

Ejemplo: partícula no relativista con fuerza conservativa en una dimensión

Supongamos que tenemos una partícula que se mueve en una dimensión bajo la

influencia de una fuerza conservativa a velocidades no relativistas. Su lagrangiano

tendrá la forma

L =
1
2

mẋ2 −V (x)

La ecuación de movimiento resultantes será, por supuesto

mẍ =−V ′(x)

Puede resultar más o menos complejo resolver esta ecuación para un potencial cual-

quiera V (x). Sin embargo, si el potencial tiene un punto estacionario en xmin, es decir

que V ′(xmin) = 0, entonces una solución trivial es la constante x = xmin.

Vimos en la clase anterior que cuando el potencial crece muy rápidamente al alejarnos

del mínimo en ambas direcciones, entonces la solución x = xmin es una buena apro-

ximación de cualquier solución, y el sistema está vinculado. Nos preguntamos ahora

qué pasa si el mínimo del potencial no es tan marcado, lo que permitiría a la partícula

alejarse ligeramente de x = xmin.

Queremos seguir el movimiento expandiendo en potencias del desplazamiento del

sistema respecto de xmin, por lo que escribimos x = xmin+ εδx con ε lo suficientemente

pequeño. En ese caso, el Lagrangiano toma la forma

L =
1
2

m(ẋmin+ εδ ẋ)2 −V (xmin+ εδx)

Expandiendo en potencias de ε tenemos

L ≈−V (xmin)− ε V ′(xmin)δx+ ε
2
(

1
2

mδ ẋ2 − 1
2

V ′′(xmin)δx2
)
+O(ε)3

El término V (xmin) es una constante que no afectará las ecuaciones de movimiento, ya

que las mismas se obtienen de tomar derivadas respecto de δx y δ ẋ. Por otro lado, el

término lineal ε V ′(xmin)δx se anula porque xmin es un punto estacionario del potencial.

Nos queda entonces la expresión

L ≈ ε
2
(

1
2

mδ ẋ2 − 1
2

k δx2
)
+O(ε)3

Donde k = V ′′(xmin). Al orden más bajo en ε este es el lagrangiano de un oscilador

armónico, como puede verse obteniendo sus ecuaciones de movimiento

mδ ẍ+ k δx = 0
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Nótese que hubiéramos obtenido la misma ecuación si en lugar de expandir en poten-

cias de ε en el lagrangiano, lo hacíamos en la ecuación de movimiento para x.

Esta ecuación es lineal y tiene coeficientes reales, lo que nos permite recurrir a la técnica

de complexificación para obtener una solución, como se describe a continuación. Para

comenzar, duplicamos la ecuación, inventando una segunda variable δ x̃ que también

la satisface, con lo que tenemos

mδ ẍ+ k δx = 0 mδ ¨̃x+ k δ x̃ = 0

Ahora definimos la variable compleja δζ = δx+ iδ x̃. Es fácil ver que, multiplicando por

i la segunda ecuación y sumándola a la primera, se obtiene una ecuación para δζ con

la forma

mδ ζ̈ + k δζ = 0

Si ahora escribimos una solución tentativa o Ansatz de la forma δζ = ce−iω t con c y ω

constantes, podemos insertarlo en la ecuación para obtener

(m−ω
2k)c = 0

Esto se satisface siempre que ω =±
√

k/m, para cualquier valor de c, lo que nos permite

elegir convencionalmente c = 1/
√

m. Hemos obtenido entonces dos soluciones, una

para cada elección del signo de ω. Como se trata de una ecuación lineal, podemos

escribir la solución general como una combinación lineal de ambas, en la forma

δζ =
1√
m

(
A+eiω t +A−e−iω t)

con A± constantes arbitrarias. De aquí obtenemos δx tomando la parte real

δx =
1√
m

ℜ
(
A+eiω t +A−e−iω t)

Nótese que ω2 viene dado por k/m =V ′′(xmin)/m. Por lo tanto, si el punto estacionario

xmin del potencial es un mínimo, ω será real y las exponenciales en la expresión anterior

serán sumas de senos y cosenos, por lo que al tomar la parte real obtenemos

δx = Acos(ω t +ϕ)

Donde A y ϕ se pueden escribir fácilmente en términos de A± y m.

Si en cambio xmin es un máximo del potencial, todos los cálculos que hicimos para

obtener la solución se mantienen sin cambios, sólo que al final obtendremos un valor

de ω que será imaginario. En ese caso la solución general queda escrita como

δx =
1√
m

ℜ

(
A+e−|ω| t +A−e|ω| t

)
Aquí vemos que uno de los términos tiende a cero exponencialmente, mientras que el

otro diverge. Esto quiere decir que cualquier perturbación δx alrededor del máximo xmin
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saca al sistema del punto estacionario y lo hace caer por el potencial. Por supuesto

cuando esto sucede, la solución que obtuvimos sólo es válida durante un pequeño

intervalo de tiempo, ya que en su deducción asumimos que δx era pequeño.

En el análisis de este problema sencillo, aislamos los pasos cruciales que nos permitirán genera-

lizar en lo que sigue. Primero linealizamos, es decir escribir las ecuaciones a primero orden en

una perturbación alrededor de la solución de equilibrio. Luego complexificamos, es decir trans-

formamos nuestra variable dependiente en una cantidad compleja. Finalmente propusimos una

solución tentativa o Ansatz conteniendo exponenciales complejas, lo que simplificó el cálculo de

las derivadas. Repetiremos estos pasos en un caso bidimensional en el ejemplo siguiente.

Ejemplo: partícula no relativista con fuerza conservativa en dos dimensiones

Estudiemos ahora el caso de una partícula que se mueve en dos dimensiones sometida

a la acción de una fuerza conservativa a velocidades no relativistas. En coordenadas

cartesianas, este problema toma la forma

L =
1
2

m
(
ẋ2 + ẏ2)−V (x,y)

De nuevo, supongamos que (xsol,ysol) es un punto estacionario del potencial, que

cumple que sus derivadas se anulan allí

∂V
∂x

(xsol,ysol) =
∂V
∂y

(xsol,ysol) = 0

Escribiendo una pequeña perturbación alrededor del punto estacionario como x =

xsol+ εδx, y = ysol+ εδy y desarrollando a segundo orden en el parámetro pequeño ε,

nos queda

L =− V |x=xsol
y=ysol

− ε

(
∂V
∂x

∣∣∣∣x=xsol
y=ysol

δx+
∂V
∂y

∣∣∣∣x=xsol
y=ysol

δy

)
+

+
1
2

ε
2

(
m(δ ẋ2 +δ ẏ2)− ∂ 2V

∂x2

∣∣∣∣x=xsol
y=ysol

δx2 − ∂ 2V
∂y2

∣∣∣∣x=xsol
y=ysol

δy2 −2
∂ 2V
∂x∂y

∣∣∣∣x=xsol
y=ysol

δxδy

)
+O(ε)3

En la primera línea, el primer término es una constante que no depende de δx ni de δy,

ni de sus derivadas, y que por lo tanto no afectará las ecuaciones de movimiento. En

cuanto a los siguientes dos términos, se anulan por la condición de punto estacionario.

Eso nos deja, al orden más bajo en ε, con el lagrangiano cuadrático

L = ε
2
(

1
2

m
(

δ ẋ2 +δ ẏ2
)
− 1

2
kxx δx2 − 1

2
kyy δy2 − kxy δxδy

)
donde hemos definido las magnitudes

kxx =
∂ 2V
∂x2 (xsol,ysol) kyy =

∂ 2V
∂y2 (xsol,ysol) kxy =

∂ 2V
∂x∂y

(xsol,ysol)

De este lagrangiano se obtienen las ecuaciones de movimiento

mδ ẍ+ kxx δx+ kxy δy = 0 mδ ÿ+ kyy δy+ kxy δx = 0
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Nótese que estas ecuaciones tienen la forma de dos osciladores armónicos acoplados.

Podemos recurrir nuevamente a la técnica de complexificación, para lo cual tenemos

que inventar dos nuevas variables dependientes δ x̃ y δ ỹ, para crear las funciones

complejas δζ = δx+ iδ x̃ y δξ = δy+ iδ ỹ. Las ecuaciones se escriben entonces

mδ ζ̈ + kxx δζ + kxy δξ = 0 mδ ξ̈ + kyy δξ + kxy δξ = 0

Escribimos un Ansatz de la forma δζ = cxeiω t y δξ = cyeiω t . Reemplazando en las

ecuaciones obtenemos(
kxx −mω

2)cx + kxy cy = 0
(
kyy −mω

2)cy + kxy cx = 0

El caso más sencillo es cuando kxy = 0. Entonces, las ecuaciones se desacoplan, en

el sentido de que la ecuación para cx no contiene cy y viceversa. En ese caso, de la

primera ecuación podemos despejar la frecuencia obteniendo que δζ es un oscilador

armónico con frecuencia ω1 =±
√

kxx/m, y haciendo lo mismo en la segunda vemos que

δξ es otro oscilador con frecuencia ω2 =±
√

kyy/m. Además, se ve en las ecuaciones

que podemos poner cx = cy = 1/
√

m. La solución para kxy = 0 se escribe entonces en

la forma

δx =
1√
m

ℜ
(
A+

x eiω1t +A−
x e−iω1t)

δy =
1√
m

ℜ
(
A+

y eiω2t +A−
y e−iω2t)

Donde hemos construido para cada una de las direcciones espaciales una combinación

lineal de las dos soluciones obtenidas, y hemos tomado la parte real. Aquí vemos

que ambas perturbaciones oscilarán cuando el potencial tenga un mínimo en el punto

estacionario, ya que en ese caso tanto kxx como kyy serán positivas. Por otro lado, si

el potencial tuviera un máximo, ambas perturbaciones serían inestables, creciendo

exponencialmente. En el caso de que el punto estacionario sea un punto de ensilladura,

entonces una de las dos perturbaciones oscilará mientras que la otra será inestable y

crecerá exponencialmente.

Volviendo ahora al caso general en el que kxy 6= 0, debemos resolver el sistema acoplado(
kxx −mω

2)cx + kxy cy = 0
(
kyy −mω

2)cy + kxy cx = 0

Multiplicando la primera ecuación por
(
kyy −mω2

)
y la segunda por kxy y restando,

obtenemos((
kyy −mω

2)(kxx −mω
2)− k2

xy
)

cx = 0

Para que se anule el prefactor tiene que cumplirse que

m2(ω2)2 −m(kxx + kyy)ω
2 + kxxkyy − k2

xy = 0

Esta es una ecuación cuadrática para ω2, que resulta en las dos soluciones ω2
1,2

ω
2
1,2 =

1
2m

(
kxx + kyy ±

√
(kxx − kyy)2 +4k2

xy

)
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Por lo tanto, hay dos frecuencias posibles para este sistema dependiendo de la elección

de signo en esta solución. Vemos en la fórmula que ambas soluciones satisfacen ω2
1,2 ∈

R. Estas se denominan las frecuencias normales del sistema. Se puede comprobar

que si ponemos kxy = 0 recuperamos las frecuencias que obtuvimos más arriba.

Todavía nos falta resolver para cx y cy. Primero notemos que las ecuaciones determinan

esas magnitudes a menos de una constante multiplicativa. En efecto, si tomamos

cualquier solución cx,cy y multiplicamos ambas magnitudes por el mismo número,

obtenemos otra solución. Esto nos permite elegir m(c2
x + c2

y) = 1 o en otras palabras

cx = (1/
√

m)cosα, cy = (1/
√

m)sinα para algún ángulo α. Con esto, las ecuaciones

toman la forma

(
kxx −mω

2)cosα =−kxy sinα
(
kyy −mω

2)sinα =−kxy cosα

Reemplazando cualquiera de nuestras soluciones para ω2 y dividiendo ambas ecua-

ciones se obtiene

tan2
α1,2 =

kxx −mω2
1,2

kyy −mω2
1,2

donde se ve que hay dos soluciones α1,2, correspondientes a las frecuencias ω2
1,2.

Luego al tomar la raíz cuadrada, cada una de esas frecuencias aparecerá con ambos

signos. Con esto, nuestra solución general para el problema se puede escribir como

δx =
1√
m

ℜ
(
cosα1(A+

1 eiω1t +A−
1 e−iω1t)+ cosα2(A+

2 eiω2t +A−
2 e−iω2t)

)
δy =

1√
m

ℜ
(

sinα1(A+
1 eiω1t +A−

1 e−iω1t)+ sinα2(A+
2 eiω2t +A−

2 e−iω2t)
)

donde A±
1,2 son constantes arbitrarias que parametrizan una combinación lineal de las

cuatro soluciones linealmente independientes, y hemos tomado la parte real. Nótese

que ahora la estabilidad o inestabilidad del sistema estará determinada por los valores

reales o imaginarios de ambas frecuencias ω1,2.

Ahora bien, las soluciones que hemos obtenido sugieren el cambio de variables

δx =
1√
m
(cosα1 δu1 + cosα2 δu2)

δy =
1√
m
(sinα1 δu1 + sinα2 δu2)

Podríamos haber comenzado nuestros cálculos haciendo este cambio de variables

directamente en el el lagrangiano, que tomaría entonces la forma

L = ε
2
(

1
2

(
δ u̇2

1 +δ u̇2
2

)
+

1
2
(
ω

2
1 δu2

1 +ω
2
2 δu2

2
))

donde hemos utilizado la relación entre ω1,2 y tanα1,2 que escribimos más arriba. Esto

significa que δu1 y δu2 son dos osciladores armónicos desacoplados, que oscilan

con las dos frecuencias que hemos obtenido. Se denominan los modos normales del
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sistema, y corresponden a rotar δx y δy hacia las direcciones de cambio máximo y de

cambio mínimo del potencial.

Todo el cálculo de esta sección se puede simplificar si lo escribimos en términos de

matrices. Para eso, ponemos

~δx = (δx,δy)

k =

 kxx kxy

kxy kyy


siendo k la matriz hessiana del potencial, es decir la matriz cuyos elementos son las

derivadas segundas de V , evaluada en la solución. Con esto, el lagrangiano se escribe

L = ε
2
(

1
2

m ~δx
2
− 1

2
~δx

t
· k · ~δx

)
y las ecuaciones de movimiento

m ~̈δx+ k · ~δx = 0

Lo que se complexifica de manera inmediata

m ~̈δζ + k · ~δζ = 0

usando el Ansatz ~δζ =~ce−iω t tenemos

(
k−mω

2 I
)
·~c = 0

Esto es una ecuación de autovalores donde mω2 sería un autovalor de la matriz k.

Nótese que esta ecuación determina~c a menos de una constante multiplicativa, por lo

que podemos elegir m~c t ·~c = 1 de donde~c = (1/
√

m)(cosα,sinα) para algún ángulo α .

Para que esta ecuación tenga una solución no trivial, se tiene que cumplir que

Det
(
k−mω

2 I
)
= 0

lo que no es más que la ecuación cuadrática en ω2 que obtuvimos más arriba, de

donde despejamos las dos soluciones ω1,2. Esto implica que habrá en principio dos

soluciones diferentes para~c que podemos llamar~c1,2. Estas soluciones cumplen

k ·~c1 = mω
2
1~c1 k ·~c2 = mω

2
2~c2

Multiplicando cada ecuación por el vector correspondiente~c1 o~c2, obtenemos

~c t
1,2 · k ·~c1,2 = ω

2
1,2

de donde vemos que el signo de ω2
1,2, y consecuentemente la estabilidad del sistema,

dependerán del signo de~c t
1,2 ·k ·~c1,2. Si miramos con atención el desarrollo de Taylor del

potencial que escribimos más arriba, podemos comprobar que esta última expresión
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corresponde al cambio en el potencial cuando nos alejamos del punto estacionario una

distancia~c1,2. Si este cambio es positivo, es decir si estamos en un mínimo de potencial,

entonces ambas frecuencias son reales. Por otro lado si el cambio es negativo, es

decir si estamos en un máximo del potencial, ambas serán imaginarias y aparecerá

una inestabilidad. Puede darse también que estemos en un punto silla, y que el cambio

sea positivo para el vector~c1 y negativo para~c2, implicando que habrá estabilidad en

una dirección e inestabilidad en la otra.

Si ahora multiplicamos la primera ecuación de más arriba por~c2 y la segunda por~c1 y

las restamos tenemos la relación

m(ω2
1 −ω

2
2 )(~c

t
2 ·~c1) = 0

Donde hemos usado que kt = k. Esto implica que si ω1 6=ω2 entonces~c1 es perpendicular

a~c2.

La solución general puede entonces escribirse

~δx = ℜ
((

A+
1 eiω1t +A−

1 e−iω1t)~c1 +
(
A+

2 eiω2t +A−
2 e−iω2t)~c2

)
con lo que los modos normales nos quedan escritos según

~δx = δu1~c1 +δu2~c2

Una vez más, podemos reemplazar en el Lagrangiano

L = ε
2
(

1
2

(
δ̇u

2
1 −ω

2
1 δu2

1

)
+

1
2

(
δ̇u

2
2 −ω

2
2 δu2

2

))
Donde hemos obtenido dos osciladores armónicos independientes, cada uno oscilando

con una de las frecuencias normales ω1,2 en las direcciones normales~c1,~c2.

Ahora vamos a generalizar lo que vimos en los ejemplos precedentes en dos direcciones: por

un lado, vamos a agregar un número arbitrario de coordenadas, y por otro vamos a permitir un

lagrangiano más general, con la forma

L(q̇i,qi) =
1
2

Ki j(qk) q̇iq̇ j −V (qi)

donde la matriz Ki j(qk) es en principio una función sólo de las coordenadas. Este lagrangiano

corresponde a un sistema de partículas no relativistas con fuerzas conservativas, sometido a

vínculos holonómicos que ya han sido resueltos mediante coordenadas adaptadas.

Las ecuaciones de movimiento se escriben como

d
dt

(
∂L
∂ q̇i

)
− ∂L

∂qi
=

d
dt
(Ki j(qk)q̇ j)−

∂V (qk)

∂qi
− 1

2
∂K jk

∂qi
q̇ jq̇k = 0

Estas ecuaciones tienen una solución estática qi = qsoli si el potencial tiene un punto estacionario,

es decir si ∂V/∂qi|qk=qsolk
= 0.
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Ahora perturbamos el sistema sacándolo del punto estacionario con una pequeña variación de las

coordenadas qk = qsolk + εδqk. En la energía cinética esto nos permite escribir

K(δ q̇k,qsolk + εδqk) = ε
2 1

2
Ki j(qsolk + εδqk)δ q̇iδ q̇ j = ε

2 1
2

Ki j(qsolk )︸ ︷︷ ︸
mi j

δ q̇iδ q̇ j +O(ε)3

Donde la matriz de masas se definió como mi j = Ki j(qsolk ). Por otro lado en el potencial

V (qsoli + εδqi) =V (qsolk )+ ε
∂V (qsolk )

∂qi
δqi + ε

2 1
2

∂ 2V (qsol
k )

∂qi∂q j︸ ︷︷ ︸
ki j

δqiδq j +O(ε)3

El término lineal se anula debido a la condición de punto estacionario, y el término constante no

contribuye a las ecuaciones de movimiento por lo que lo podemos omitir. La matriz de restauración

es ki j = ∂ 2V/∂qi∂q j|qk=qsolk
. Con esto el lagrangiano al menor orden en ε se lee

L = ε
2
(

1
2

mi j δ q̇iδ q̇ j −
1
2

ki jδqiδq j

)
De donde se obtienen inmediatamente las ecuaciones de movimiento

mi jδ̈q j + ki jδq j = 0

Complexificando las variables δζ j = δq j + iδ q̃ j podemos proponer el Ansatz δζi = cie−iω t e inser-

tarlo en la ecuación. Nos queda(
ki j −ω

2mi j
)

c j = 0

o bien, en notación matricial(
k−ω

2m
)
·~c = 0

Esto es una ecuación de autovalores, la cual tiene una solución no trivial siempre que el determi-

nante se anule

Det
(
k−ω

2m
)
= 0

Si tenemos D coordenadas generalizadas {qi}, entonces la matriz entre paréntesis tiene D×D

componentes. Esto implica que el determinante será un polinomio de grado D en los elementos

de la matriz, y por lo tanto es un polinomio de ese grado en la variable ω2. Las raíces de este

polinomio nos darán los posibles valores de ω2, que serían en principio D valores diferentes ω2
i con

i ∈ {1 . . .D}. Para cada uno de estos valores, deberíamos obtener el autovector correspondiente

resolviendo la ecuación(
k−ω

2
i m
)
·~ci = 0

En principio hay D vectores diferentes~ci con i ∈ {1 . . .D}. Nótese que cada uno de ellos tiene D

componentes ci j con j ∈ {1 . . .D}. Se puede probar que estos vectores son reales, y lo asumiremos

en lo que sigue. Si multiplicamos por~c t
j la ecuación para~ci tenemos

~c t
j · k ·~ci = ω

2
i ~c

t
j ·m ·~ci



178 Capítulo 12. Pequeñas oscilaciones

Si en cambio multiplicamos por~c t
i la ecuación para~c j nos queda

~c t
i · k ·~c j = ω

2
j ~c

t
i ·m ·~c j

Transponiendo la segunda ecuación y restándola de la primera(
ω

2
j −ω

2
i
)
(~c t

i ·m ·~c j) = 0

Con lo que tenemos que cuando i 6= j se cumple que ~c t
i ·m ·~c j = 0. Esta ecuación no nos dice

nada del caso i = j, pero dado que los vectores~ci están determinados a menos de una constante

multiplicativa, en ese caso podemos definir~c t
i ·m ·~ci = 1. Podemos resumir estos resultados en la

ecuación

~c t
i ·m ·~c j = δi j

Esto a su vez implica, usando una de las expresiones que escribimos más arriba, que

~ct
i · k ·~c j = ω

2
j δi j

Poniendo i = j podemos despejar

ω
2
i =

~ct
i · k ·~ci

~c†
i ·m ·~ci

Con lo que vemos que el signo de ω2 está dado por el signo de~ct
i · k ·~ci y de~ct

i ·m ·~ci. La primera

expresión representa la variación del potencial cuando nos apartamos del punto estacionario una

cantidad δq j = ci j. Por lo tanto será positivo si el punto estacionario es un mínimo, y negativo

en caso contrario. En este último caso decimos que tenemos una inestabilidad taquiónica. La

segunda expresión representa la energía cinética de una perturbación con velocidad δ q̇ j = ci j, y

por lo tanto debe ser positiva para cualquier sistema estable.

La solución general del problema puede entonces escribirse como

δq j = ℜ
((

A+
i e+iωi t +A−

i e−iωi t)ci j
)

con lo que podemos definir los modos normales según δq j = ci jδui, o bien en términos matriciales

~δq =~ci δui

Reemplazando en el lagrangiano

L = ε
2
(

1
2
~̇δqt ·m · ~̇δq− 1

2
~δq

t
· k · ~δq

)
= ε

2
(

1
2

δ u̇i~ct
i ·m ·~c j δ u̇ j −

1
2

δui~ct
i · k ·~c j δu j

)
En el primer término podemos usar la relación de ortogonalidad que habíamos obtenido antes

~ct
i ·m ·~c j = δi j mientras que en el segundo término usamos la ecuación de autovalores~ct

i ·k ·~c j =ω2
j δi j.

Esto nos deja con

L = ε
2
∑

i

1
2

(
δ u̇2

i −ω
2
i δu2

i

)
Donde por claridad escribimos explícitamente la suma en i. El sistema ha sido descompuesto

entonces en un conjunto de D osciladores armónicos desacoplados, oscilando con las frecuencias

normales. Estas frecuencias se conocen como el espectro del sistema.
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Nota:

Para tener una interpretación del resultado que hemos obtenido, imaginemos un sistema

mecánico cualquiera que está en reposo en alguna de sus posiciones de equilibrio.

Si le aplicamos un estímulo que le entrega una cierta cantidad de energía, sus modos

normales comenzarán a oscilar, cada uno en su frecuencia característica y con una

cierta amplitud que dependerá del estímulo y de las particularidades del sistema.

Para dar una forma concreta a esta discusión, consideremos el sistema compuesto

por cuerdas, parches, lengüetas, cajas de resonancia y una cierta cantidad de aire

contenido dentro de las mismas. Es decir, un instrumento musical cualquiera.

Se trata de un número gigantesco de partículas, si quisiéramos tener en cuenta cada

uno de los átomos que constituyen el instrumento. Y sin embargo, el análisis que

acabamos de realizar se aplica, y por lo tanto sabemos que sus pequeñas oscilaciones

deben comportarse como predijimos.

Esto nos permite interpretar que los modos normales corresponden a las diferentes

maneras en las que el instrumento puede vibrar, las frecuencias de su espectro de-

terminan los tonos en los que puede sonar, y la amplitud de cada modo establece el

timbre característico que distingue una guitarra de un piano o de un tambor.

En algún sentido, nuestro resultado implica que todas las cosas están llenas de música.

Sin embargo, no cualquier sistema mecánico “suena bien”. Esto se debe a nuestra

propensión psicológica a considerar agradables ciertas combinaciones armónicas

de frecuencias, tales que los cocientes entre frecuencias sucesivas correspondan a

números enteros pequeños. El arte del luthier consiste entonces en construir sistemas

mecánicos que tengan el espectro correcto, de modo de satisfacer tal condición.

Nota:

Una pregunta interesante es cuánta información se puede obtener de un dado sistema

mecánico a partir de su espectro. En palabras del matemático Mark Kac “¿Se puede

escuchar la forma de un tambor?”.

Esta pregunta, planteada en 1966, fue respondida recién en 1994 cuando Carolyn

Gordon, David Webb, and Scott Wolpert encontraron tambores isoespectrales que

suenan igual a pesar de tener formas diferentes.

12.3 Generalización

En esta sección delinearemos la construcción de las pequeñas oscilaciones de un sistema con un

lagrangiano general. Esto incluye los sistemas no autónomos en los que el lagrangiano depende

del tiempo, que se obtienen al considerar fuerzas monogénicas o potenciales dependientes de

las velocidades, o bien sistemas vínculos reónomos. Esto también incluye sistemas en los que la

energía cinética no es cuadrática en las velocidades.
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Ejemplo: caso unidimensional general

Para un sistema unidimensional general que depende de la coordenada generalizada

q, el lagrangiano se escribe

L = L(q̇,q, t)

Vamos a suponer que conocemos una solución q = qsol(t), que cumple las ecuaciones

de movimiento de este problema

d
dt

(
∂L
∂ q̇

∣∣∣∣
q=qsol

)
− ∂L

∂q

∣∣∣∣
q=qsol

= 0

Ahora bien, como queremos expandir alrededor de esta solución, escribimos q =

qsol+ εδq y reemplazamos en L para obtener

L = L|q=qsol + ε

(
∂L
∂ q̇

∣∣∣∣
q=qsol

δ q̇+
∂L
∂q

∣∣∣∣
q=qsol

δq

)
+

+ε
2 1

2

(
∂ 2L
∂ q̇2

∣∣∣∣
q=qsol

δ q̇2 +
∂ 2L
∂q2 δq2

∣∣∣∣
q=qsol

+2
∂ 2L

∂ q̇∂q

∣∣∣∣
q=qsol

δqδ q̇

)
+O(ε)3

En esta expresión, el primer término no depende de las variables δq y δ q̇ respecto

de las cuales vamos a derivar para obtener las ecuaciones de movimiento, por lo que

no influirá en ellas y puede ser omitido. Los términos lineales tampoco influirán en las

ecuaciones de movimiento para δq, porque contribuyen a la ecuación de Lagrange

para δq con la ecuación para q evaluada en q = qsol, que sabemos que se anula. Esto

nos deja con el lagrangiano al orden más bajo

L = ε
2 1

2

(
∂ 2L
∂ q̇2

∣∣∣∣
q=qsol

δ q̇2 +
∂ 2L
∂q2

∣∣∣∣
q=qsol

δq2 +2
∂ 2L

∂ q̇∂q

∣∣∣∣
q=qsol

δqδ q̇

)

Este lagrangiano resulta en las ecuaciones de movimiento

d
dt

(
∂ 2L
∂ q̇2

∣∣∣∣
q=qsol︸ ︷︷ ︸

m(t)

δ q̇
)
+

(
d
dt

(
∂ 2L

∂ q̇∂q

)
− ∂ 2L

∂q2

)∣∣∣∣
q=qsol︸ ︷︷ ︸

k(t)

δq = 0

En otras palabras, terminamos con una ecuación diferencial lineal de segundo orden

escrita en la forma general de Sturm-Liouville

d
dt

(
m(t)

dδq
dt

)
+ k(t)δq = 0

Esta ecuación se estudia en los cursos de ecuaciones diferenciales. Aquí solo diremos

que tiene en general dos soluciones linealmente independientes f±(t), y que cualquier

otra solución se puede escribir como una combinación lineal de la forma

δq(t) = A+ f+(t)+A− f−(t)

Nótese que aquí ± es solo una notación para distinguir dos soluciones, y no se re-

fiere al signo de ninguna frecuencia, ya que las f±(t) no son en general funciones

trigonométricas ni exponenciales.
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Aplicando el resultado al caso particular en el que ni m ni k dependen del tiempo, vemos

que la ecuación recupera la forma de un oscilador armónico

mδ q̈+ k δq = 0

La diferencia con el caso de una partícula que se mueve en una dimensión bajo

los efectos de una fuerza conservativa, es que ahora m y k se obtienen a partir del

lagrangiano según las fórmulas de arriba. Por supuesto, la solución estará como antes

dada por la expresión

δq(t) =
1√
m

ℜ
(
A+eiω t +A−e−iω t)

Y será oscilatoria siempre que m y k sean positivos. Nótese que ahora hay dos po-

sibles fuentes de inestabilidad, que podrían hacer que ω =
√

k/m fuera imaginario:

podríamos tener k negativo, lo que implicaría un máximo de potencial, o podríamos

tener m negativo, que implicaría que la inestabilidad proviene de la energía cinética. La

primera inestabilidad se llama taquiónica o por taquiones y la segunda se denomina

por fantasmas.

Ahora vamos a generalizar lo que hemos encontrado en el ejemplo al caso de un lagrangiano

sin restricciones que depende de varias coordenadas y velocidades generalizadas, con la forma

L(q̇i,qi, t). Si tenemos una solución qk = qsolk que cumple las ecuaciones de movimiento

d
dt

(
∂L
∂ q̇

∣∣∣∣
q=qsoli

)
− ∂L

∂q

∣∣∣∣
q=qsoli

= 0

Escribiendo q = qsoli + εδqi y expandiendo el lagrangiano a orden cuadrático en ε alrededor de la

solución, tenemos al orden más bajo

L = ε
2 1

2

(
∂ 2L

∂ q̇i∂q j

∣∣∣∣
qk=qsolk

δ q̇iδ q̇ j +
∂ 2L

∂qi∂q j
δqiδq j

∣∣∣∣
qk=qsolk

+2
∂ 2L

∂ q̇i∂q j

∣∣∣∣
qk=qsolk

δq jδ q̇i

)

Donde hemos omitido los términos constantes y lineales porque no contribuyen a las ecuaciones

de movimiento. Estas ecuaciones toman la forma

d
dt

(
∂ 2L

∂ q̇i∂ q̇ j

∣∣∣∣
qk=qsolk︸ ︷︷ ︸

mi j(t)

δ q̇ j

)
+

(
d
dt

(
∂ 2L

∂q j∂ q̇i

)
− ∂ 2L

∂qi∂q j

)∣∣∣∣
qk=qsolk︸ ︷︷ ︸

ki j(t)

δq j = 0

o en otras palabras

d
dt

(
mi j(t)

dδq j

dt

)
+ ki j(t)δq j = 0

Esto es un conjunto de ecuaciones diferenciales lineales de segundo orden acopladas, en la forma

de Sturm-Liouville. En general no es fácil desacoplar esos sistemas para encontrar una solución,

por lo que se estudian con técnicas numéricas.



182 Capítulo 12. Pequeñas oscilaciones

En el caso particular en que ni ki j ni mi j dependan del tiempo, recuperamos la ecuación con la que

trabajamos en la sección anterior

mi j δ q̈ j + ki j δq j = 0

Un detalle a tener en cuenta es que ahora la matriz m no tiene por qué ser definida positiva. Por lo

tanto, en la expresión

ω
2
i =

~c t
i · k ·~ci

~c t
i ·m ·~ci

pueden ahora aparecer, además de las inestabilidades taquiónicas originadas en el signo nega-

tivo del numerador, otras inestabilidades por fantasmas originadas en un signo negativo en el

denominador.

12.4 Resumen

En esta clase hemos aprendido a relajar los vínculos, resolviendo el problema de las pequeñas

oscilaciones de un sistema físico en torno a una posición de equilibrio. Hemos identificado a los

sistemas estables e inestables, y clasificamos esas inestabilidades como taquiones o fantasmas.

También identificamos el espectro y los modos normales de un sistema, como la solución a un

problema de autovalores y autovectores.

Dos generalizaciones que no hemos explorado por razones de espacio, pero que se pueden

obtener con los elementos aprendidos aquí, son las siguientes

1. Desarrollo en torno a un punto que no es una solución:

Por ejemplo, podríamos querer obtener las pequeñas oscilaciones alrededor de un mínimo

de potencial cuando el potencial depende del tiempo. En este caso, el mínimo q j = qmin
j (t) no

es estático y por lo tanto tampoco es una solución. Esto implica que los términos lineales no

desaparecen del lagrangiano para las perturbaciones, resultando en inhomogeneidades en

las ecuaciones de movimiento. Es decir que tenemos un sistema de osciladores forzados. Es

fácil probar que el fenómeno de resonancia se producirá cuando cualquiera de las frecuencias

normales del sistema coincida con alguna frecuencia de la fuerza forzadora.

2. Desarrollo en órdenes mayores de la perturbación:

Podríamos también querer perturbar más allá del orden lineal, escribiendo qi = qsoli + εδqi +

ε2δ (2)qi, desarrollando las ecuaciones de movimiento a orden cuadrático en ε. Esto es

exactamente lo que hicimos cuando estudiamos el teorema de Bertrand en la clase sobre el

problema de dos cuerpos. Es fácil ver que se obtienen también osciladores forzados, y que

en este caso el fenómeno de resonancia podría generar inestabilidades no lineales.



13. Principio de acción estacionaria

13.1 Objetivos

William Rowan Hamilton

En esta clase estudiaremos un principio general que nos

permitirá obtener las ecuaciones de Lagrange a partir de

una sola magnitud física denominada acción.

Tal principio nos guiará para generalizar la Mecánica

más allá de los sistemas de partículas relativistas y no

relativistas con o sin vínculos que venimos estudiando

hasta ahora. Veremos que hay una amplia variedad de

sistemas físicos cuya estructura granular o de partículas

no resulta distinguible, y que sin embargo se pueden

considerar sistemas mecánicos ya que obedecen las

leyes generales de la Mecánica Analítica.

Por otro lado, seremos en esta clase capaces de vislum-

brar los límites de la Mecánica Analítica. Veremos que debe estar necesariamente inscripta dentro

de una teoría mayor que la contenga, imaginando así la necesidad de una Mecánica Cuántica.

13.2 Funcionales y cálculo variacional

En esta sección vamos a introducir el concepto matemático de funcional, que es una generalización

de la idea de función. Además, vamos a estudiar los fundamentos del cálculo variacional que

es el área de las matemáticas que amplía el concepto de derivada a estos nuevos objetos. Nos
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motivaremos principalmente en el ejemplo sencillo de la longitud de arco de una curva que une

dos puntos en el plano euclidiano.

Comencemos con la definición: a los fines de este curso, una funcional F es cualquier aplicación

que tome una función f y nos devuelva un número. Las funcionales son objetos diferentes de

las funciones que conocemos de los cursos de Análisis. En efecto, una función f nos devuelve

un número f (x) para cada valor de la variable x, mientras que una funcional F nos devuelve un

número F[ f ] para cada función f . Nótese que para las funcionales usamos la notación de corchete

F[ f ], que se distingue de la notación de paréntesis f (x) comúnmente usada para las funciones.

Ejemplos: algunas funcionales sencillas

Una funcional que usamos todo el tiempo sin llamarla de ese modo es la evaluación

Ex0 en un punto x0, definida como

Ex0 [ f ] = f (x0)

Para cada función f esta funcional nos devuelve un número f (x0), que es el valor de

la función evaluada en x0.

Una funcional un poco más compleja se puede definir a partir de una función auxiliar

g(x,y) y un punto x0 de acuerdo a

F[ f ] = g(x0, f (x0))

Nuevamente obtenemos un número para cada función f , que es el valor de la función

auxiliar g sobre la curva descripta en el plano por y = f (x), en el punto x0. Si tenemos

varios puntos xn, otra funcional que podemos construir con la misma función auxiliar

esta dada por

F[ f ] = ∑
n

g(xn, f (xn))

que corresponde a sumar la funcional previa sobre varios puntos del eje x.

Podemos tener funcionales que dependan de varias funciones, o de su valor en varios

puntos. Por ejemplo, dada una función auxiliar g(xn, fi,hi) donde hay D variables fi y

otras D variables hi además de las variables xn, podemos definir

F[ fi] = ∑
n

f (xn, fi(xn), fi(xn+1))

Otra funcional que usamos continuamente desde los cursos básicos sin identificarla

como tal es la integral definida

F[ f ] =
∫ x1

x0

f (x)dx

Con ayuda de una función auxiliar g(x,y), esta funcional se puede generalizar a

F[ f ] =
∫ x1

x0

g(x, f (x))dx
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Para otro ejemplo similar de funcional, podemos hacer uso de una función auxiliar

g(x,y,z) para escribir

F[ f ] =
∫ x1

x0

f (x, f (x), f ′(x))dx

Se hace evidente a partir de estos ejemplos que podemos definir funcionales arbitraria-

mente complicadas.

Ejemplo: la distancia entre dos puntos en el plano

Consideremos una curva arbitraria en el plano que una los puntos (x0,y0) y (x1,y1),

como la que se puede ver en la figura 13.2.1. Estamos interesados en medir la longitud

de esa curva.

En el triángulo que se ve en el dibujo, podemos relacionar la longitud de la hipotenusa

con la de sus catetos, usando el teorema de Pitágoras, según la fórmula

∆h2 = ∆x2 +∆y2

En el límite en el que ∆x y ∆y son muy pequeños, podemos usar la forma infinitesimal

dh2 = dx2 +dy2 = dl2

donde en la segunda igualdad aprovechamos el hecho de que la longitud de la hipo-

tenusa es indistinguible de la longitud del fragmento de arco de la curva en el límite

infinitesimal. Si describimos la curva como una función y = f (x), entonces de la fórmula

anterior deducimos que

dl2 = (1+ f ′2)dx2

Esto que nos permite escribir la longitud total simplemente integrando la longitud

infinitesimal de arco a lo largo de toda la curva,

L[y] =
∫ x1

x0

√
1+ f ′2(x)dx

donde integramos entre el valor inicial x0 y el valor final x1 de la variable independiente.

La fórmula de arriba nos devuelve un número L[ f ] para cada función f , es decir que es

una funcional en el sentido que hemos definido. Su dominio son todas las funciones

derivables en el intervalo (x0,x1) tal que la expresión
√

1+ f ′2 tenga una integral finita.

Dependiendo de la aplicación, podemos querer restringir el mencionado dominio. Por

ejemplo, para comparar longitudes de diferentes curvas que unen los mismos puntos,

como haremos en el ejemplo siguiente, nos interesan funciones que cumplan f (x0) = y0

y f (x1) = y1.
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Δx

Δy Δh

x0 x1

y1

y0

Δl

x0 x1

y1

y0
f(x)

fmin(x)

Figura 13.2.1: Longitud de arco de una curva. La fórmula para el teorema de Pitágoras aplicada al triángulo

de la figura en su límite infinitesimal nos permite escribir una forma integral para la longitud de

arco de una curva. La recta es la distancia más corta entre dos puntos, para lo que se deben

comparar curvas que unan los puntos (x0,y0) y (x1,y1).

En este curso vamos a estar interesados exclusivamente en funcionales de la forma general

F[ fi] =
∫ x1

x0

g( f ′i (x), fi(x),x)dx

Donde la función auxiliar g( f ′i , fi,x) estará evaluada en las funciones fi y sus derivadas f ′i , además

de la variable x.

Un punto importante a considerar es cuál será el domino de estas funcionales, es decir sobre qué

tipo de funciones actuarán. Es evidente a partir de su definición que las funcionales del tipo arriba

mencionado sólo pueden tomar valores en funciones fi que tengan una derivada f ′i y para las

cuales la magnitud g( f ′i , fi,x) tenga una integral finita entre los puntos x1 y x2. Esto restringe el

conjunto de todas las funciones posibles a un subconjunto. En lo que sigue, vamos a limitar aún

más las funciones sobre las que actuarán nuestras funcionales fijando sus valores en los puntos

inicial y final: nos vamos a limitar a funciones que cumplan que fi(x0) = y0
i y f (x1) = y1

i

Supongamos ahora que estamos interesados en buscar, dentro de tal dominio, las funciones

que maximizan o minimizan el valor de una funcional del tipo arriba definido. Es evidente que

las técnicas que conocemos para encontrar los máximos o mínimos de una función no son

inmediatamente aplicables aquí. En efecto, no podemos tomar la derivada respecto de la variable

porque la variable misma es una función. Debemos entonces encontrar una generalización de la

idea de derivada que se aplique a las funcionales del tipo propuesto.

Ejemplo: distancia más corta entre dos puntos en el plano

Conocemos la propiedad de la geometría euclidiana que dice que la distancia más

corta entre dos puntos es una recta. Sin embargo ¿podemos probar esta afirmación?

Supongamos que y = fmin(x) es la curva de menor longitud que une (x0,y0) con (x1,y1).

Entonces cualquier curva perturbada, es decir cualquiera que podamos describir como

y = fmin(x)+ ε δ f (x) con ε pequeño, tendrá necesariamente una longitud mayor

L[ fmin+ εδ f ]≥ L[ fmin]
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Nótese que, si bien L[ f ] es una funcional de la función f , una vez que elegimos las

funciones f y δ f la expresión L[ fmin+εδ f ] es una función de la variable ε en el sentido

usual: devuelve un número para cada valor de ε . Esta observación nos permite usar lo

que sabemos de los cursos de cálculo, expandiendo dicha función en potencias de ε a

primer orden. Obtenemos

L[ fmin]+ ε δL≥ L[ fmin]

donde hemos definido el coeficiente δL según

δL=
∂

∂ε
L[ fmin+ εδ f ]

∣∣∣∣
ε=0

En la expansión de arriba, si el término lineal en ε no es nulo, entonces no estamos

evaluando la funcional en su mínimo. En efecto, si una perturbación parametrizada por

ε hace que el término lineal sea positivo, entonces la perturbación dada por −ε lo hará

negativo, resultando en una longitud menor para la curva perturbada. En conclusión,

la única manera de que fmin corresponda realmente a la longitud mínima es que el

término lineal se anule. Para encontrarlo explícitamente escribimos

L[ fmin+ εδ f ] =
∫ x1

x0

√
1+( f ′min(x)+ εδ f ′(x))2dx

Expandiendo el integrando en potencias de ε y reordenando, obtenemos

L[ fmin+ εδ f ] =
∫ x1

x0

√
1+ f ′2min(x)dx+ ε

∫ x1

x0

f ′min(x)√
1+ f ′2min(x)

δ f ′(x) dx+O(ε)2

Esto nos permite tomar la derivada respecto de ε para identificar δL en la forma

δL=
∫ x1

x0

f ′min(x)√
1+ f ′2min(x)

δ f ′(x) dx

En esta expresión podemos integrar por partes para obtener

δL=

 f ′min(x)√
1+ f ′2min(x)

δ f (x)

∣∣∣∣∣∣
x1

x0

−
∫ x1

x0

 f ′min(x)√
1+ f ′2min(x)

′

δ f (x)dx

Ahora bien, queremos comparar longitudes de diferentes curvas que unen los mismos

puntos (x0,y0) y (x1,y1). Para esto necesitamos que las curvas parametrizadas por

y = fmin(x) y y = fmin(x) + εδ f (x) empiecen y terminen en (x0,y0) y (x1,y1), lo que

necesariamente implica la condición δ f (x0) = δ f (x1) = 0. Con esto, el primer término

se anula y la expresión se reduce a

δL=−
∫ x1

x0

 f ′min(x)√
1+ f ′2min(x)

′

δ f (x)dx

Es decir que hemos identificado el término lineal δL que escribimos más arriba. Como

ya discutimos, si la curva y = fmin(x) es realmente la de menor longitud, tiene que
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cumplirse que tal término lineal se anule. Dado que es una integral que tiene que

anularse para cualquier función δ f (x), es necesario que el factor en el integrando se

anule. En otras palabras

δL

δ f
=−

 f ′min√
1+ f ′2min

′

= 0

Donde hemos definido la derivada variacional δL/δ f de la funcional L[ f ], que es una

función de la variable x. De aquí se puede deducir

f ′min√
1+ f ′2min

= constante

y por lo tanto f ′min =constante. Esto implica necesariamente que la curva y = fmin(x) es

una recta, con lo que hemos probado la afirmación de que la distancia más corta entre

dos puntos en el plano es la recta.

Claro que en realidad con este cálculo sólo hemos demostrado que la longitud es

estacionaria. Es decir, nuestros razonamientos también funcionan si se tratara de un

máximo. Para determinar que lo que hemos encontrado es realmente de un mínimo, se

deja como ejercicio demostrar que la contribución cuadrática en ε es siempre positiva.

En el ejemplo anterior fuimos capaces de encontrar, para la funcional longitud de arco, una

derivada funcional que se comporta de un modo análogo a la derivada de una función, anulándose

al evaluarla en el punto estacionario de la funcional.

Así como no todas las funciones son derivables, lo mismo sucede para las funcionales y no cualquier

funcional posee una derivada funcional. Sin embargo, para la clase particular de funcionales que

definimos más arriba, el problema tiene una solución sencilla que exploraremos a continuación.

Veamos como cambia una funcional de esa clase cuando nos movemos de una función fi a una

función ligeramente perturbada fi + εδ fi. Nótese que tanto la función inicial como la perturbada

deben estar en el dominio de la funcional, esto significa que deben tomar los valores y0
i e y1

i en los

puntos x0 y x1 respectivamente. Por lo tanto se debe cumplir la restricción para las variaciones

δ fi(x0) = δ fi(x1) = 0. Reemplazando la función perturbada en la funcional, tenemos

F[ fi + εδ fi] =
∫ x1

x0

g
(

f ′i (x)+εδ f ′i (x), f (x)+εδ fi(x),x
)

dx

Dado que ε es por definición un parámetro pequeño y que las perturbaciones δ fi son acotadas y

suaves, podemos expandir esta expresión a orden lineal en ε para obtener

F[ fi + εδ fi] =
∫ x1

x0

g( f ′i (x), fi(x),x)dx +

+ε

∫ x1

x0

(
∂g
∂ f j

( f ′i (x), fi(x),x)δ f ′j(x)+
∂g
∂ f j

( f ′i (x), fi(x),x)δ f j(x)
)

dx

En la segunda línea de esta expresión, podemos identificar el coeficiente del término lineal en ε

como la integral

δF=
∫ x1

x0

(
∂g
∂ f j

( f ′i (x), fi(x),x)δ f ′j(x)+
∂g
∂ f j

( f ′i (x), fi(x),x)δ f j(x)
)

dx
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Integrando por partes en el primer término para eliminar las derivadas de δ f j obtenemos

δF=
∫ x1

x0

(
∂g
∂ f j

( f ′i (x), fi(x),x)−
d
dx

(
∂g
∂ f j

( f ′i (x), fi(x),x)
))

δ f j(x)dx +

+

(
∂g
∂ f j

( f ′i (x), fi(x),x)δ f j(x)
)∣∣∣∣x1

x0

La segunda línea se anula dada la restricción que impusimos para que las funciones perturbadas

se mantengan en el dominio de nuestra funcional δ fi(x1) = δ fi(x2) = 0. Es decir que la contribu-

ción lineal a la variación de nuestra funcional vendrá dada por la primera línea. Para que esta

contribución se anule cualquiera sea la variación δ fi, es condición necesaria que el integrando se

anule, es decir

δF

δ f j
=

∂g
∂ f j

( f ′i , fi,x)−
d
dx

(
∂g
∂ f j

( f ′i , fi,x)
)
= 0

Donde hemos identificado la derivada variacional de nuestra funcional. Nótese la similitud de esta

expresión con las ecuaciones de Lagrange, algo que explotaremos un poco más adelante en esta

clase.

Ejemplo: distancia más corta entre dos puntos en el espacio tridimensional

Probaremos ahora que la distancia más corta entre dos puntos en el espacio tridimen-

sional también es una recta.

Dada una curva cualquiera que une los puntos~r0 = (x0,y0,z0) y~r1 = (x1,y1,z1) en el

espacio, la podemos parametrizar como ~r = (x(τ),y(τ),z(τ)). Vamos a limitarnos a

curvas suaves y que no se vayan a infinito en ningún punto, con lo que x, y, z son

funciones continuas y finitas con derivada finita del parámetro τ . Además, deben cumplir

que x(τ0) = x0, y(τ0) = y0, z(τ0) = z0 y x(τ1) = x1, y(τ1) = y1, z(τ1) = z1. Por otro lado,

usando el teorema de Pitágoras en tres dimensiones, tenemos que

dl =
√

x′2 + y′2 + z′2 dτ

Entonces podemos escribir la longitud de una curva cualquiera como

L[x,y,z] =
∫

τ1

τ0

√
x′2(τ)+ y′2(τ)+ z′2(τ)dτ

donde vemos que se obtiene una funcional del tipo especial para el cual pudimos definir

una derivada variacional más arriba, y que estamos evaluándola en un conjunto de

funciones con las limitaciones de nuestro caso. Aquí la variable x de nuestra fórmula

general corresponde al parámetro τ , y las funciones fi son tres y están dadas por x, y,

z, mientras que la función auxiliar está dada por g(x′,y′,z′) =
√

x′2 + y′2 + z′2.

Con esto, tenemos que la contribución lineal a la variación de nuestra funcional se

anulará cuando se anulen las derivadas variacionales

δL

δx
=

d
dτ

(
∂g
∂x′

)
− ∂g

∂x
=

(
x′√

x′2 + y′2 + z′2

)′

= 0
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q0
i  en t0

q1
i  en t1

Trayectoria real, acción estacionaria

Trayectorias perturbadas

Figura 13.2.2: Principio de acción estacionaria. La trayectoria real del sistema entre un punto q0
i en el instante

t0 y un punto q1
i en el instante t1 corresponde de entre todas las trayectorias posibles a aquélla

que hace que la acción sea estacionaria.

δL

δy
=

d
dτ

(
∂g
∂y′

)
− ∂g

∂y
=

(
y′√

x′2 + y′2 + z′2

)′

= 0

δL

δ z
=

d
dτ

(
∂g
∂ z′

)
− ∂g

∂ z
=

(
z′√

x′2 + y′2 + z′2

)′

= 0

Esto implica que las cantidades entre paréntesis deben ser constantes, y por lo tanto

las magnitudes x′,y′,z′ también lo son. Esto necesariamente resulta en que la curva en

cuestión es una recta que une los puntos inicial y final.

Nuevamente, esto solo prueba que para la recta la distancia es estacionaria, pero no

demuestra que se trate realmente de un mínimo, podría ser un máximo o un punto silla.

Para terminar la demostración se deja como ejercicio escribir la contribución cuadrática

y probar que es positiva.

Ejercicio:

Encontrar la función θ que hace estacionaria la funcional que mide la longitud de un

arco de una curva dibujada sobre una esfera, que se define como

L[θ ] =
∫

φ1

φ0

√
1+ sin2

φ θ ′2(φ)dφ

con las condiciones θ(φ0) = θ0 y θ(φ1) = θ1. Identifique entre las soluciones cuales son

los máximos y cuales los mínimos de la funcional ¿a qué curvas corresponden sobre

la esfera?
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13.3 Principio de Hamilton de acción estacionaria

Hasta ahora hemos escrito las ecuaciones de Lagrange a partir de un lagrangiano L(q̇i,qi, t)

siguiendo la regla que obtuvimos en las primeras clases

d
dt

(
∂L
∂ q̇i

)
− ∂L

∂qi
= 0

Una pregunta natural que podríamos hacernos es ¿cuál es el origen de esta regla? ¿Existe acaso

algún principio más fundamental que desemboque en esa combinación particular de derivadas del

lagrangiano y no en otra?

Para tratar de responder esta cuestión, comenzamos definiendo la acción S[qi] de un sistema

mecánico que se mueve entre la posición q0
i en el instante t0 y la posición q1

i en el instante t1,

según la integral

S[qi] =
∫ t1

t0
L(q̇i(t),qi(t), t)dt

Esta integral será un número real, que será diferente para diferentes curvas qi(t) que unan

los mismos puntos q0
i y q1

i . Si identificamos el tiempo con nuestra variable x, las coordenadas

generalizadas qi(t) con las funciones fi(x), y el lagrangiano L(q̇i,qi, t) con nuestra función auxiliar

g( f ′i , fi,x), la acción es una funcional de la forma general que estudiamos más arriba. Su derivada

variacional toma entonces la forma

δS

δqi
=

d
dt

(
∂L
∂ q̇i

)
− ∂L

∂qi

De donde vemos que las ecuaciones de Lagrange no son sino la condición de que la derivada

variacional se anule. En otras palabras, los sistemas físicos siguen las trayectorias que hacen que

su acción sea estacionaria.

En una primera impresión, el principio de acción estacionaria puede parecer un poco anti-intuitivo.

En efecto, para seleccionar de entre todas las trayectorias aquélla que hace que la acción sea

estacionaria, el sistema debería de algún modo tener acceso a la información sobre el valor de la

acción en todas las trayectorias posibles, incluso aquéllas que no recorrió.

Para explorar un poco más esta paradoja, analicemos otra instancia de la física en la cual aparece

un principio similar.

Ejemplo: el principio de Fermat del tiempo mínimo

En óptica geométrica existe una ley que reza que un rayo de luz selecciona el camino

que minimiza el tiempo que le toma llegar desde su origen hasta su destino.

La velocidad la luz en un medio material está dada por v= c/n(~r) donde n(~r) es el indicie

de refracción, que puede en principio variar de punto a punto. Tenemos entonces que

el tiempo T que le toma a un rayo de luz llegar desde un punto~r0 a un punto~r1 estará

dado por

T=
∫ ~r1

~r0

d`
v
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Si parametrizamos la trayectoria del rayo como~r(s) en términos de un parámetro real

s, entonces el tiempo pasa a ser una funcional de~r(s) con la forma

T[~r] =
∫ s1

s0

1
c

n(~r(s))
∣∣~r′(s)∣∣ ds

Vemos entonces que, al pedir que el tiempo sea mínimo, las ecuaciones resultantes

no serán otra cosa que la condición de que se anule la derivada funcional de T[~r].

Ejemplo: ley de Snell

Una de las consecuencias del principio del tiempo mínimo, para la forma particular de

la función n(~r) que describe una interface entre dos medios, es lo que en los cursos

básicos se estudia como ley de Snell. Para demostrarla, escribamos

n(x,y,z) =

 n(x,y,z) = n0 para z > 0

n(x,y,z) = n1 para z < 0

En este caso la funcional tiempo que definimos arriba se puede escribir

T[~r(s)] =
n0

c

∫ sint

s0

∣∣~r′(s)∣∣ ds+
n1

c

∫ s1

sint

∣∣~r′(s)∣∣ ds

Donde sint es el valor del parámetro s para el cual el rayo cruza desde la región superior

z > 0 a la inferior z < 0. Comparando con la fórmula del ejemplo anterior para la longitud

de una curva en el espacio tridimensional, vemos que

T[~r(s)] =
n0

c
L(s0,sint)+

n1

c
L(sint,s1)

Siendo L(s, s̃) la longitud de la curva como función de los valores extremos s y s̃ del

parámetro. Ambos términos serán mínimos cuando la curva que va de~r(s) a~r(s̃) sea

una recta. Esto nos da

T(~rint) =
n0

c
|~r0 −~rint|+

n1

c
|~r1 −~rint|

Donde al reemplazar los tramos z > 0 y z < 0 con rectas, hemos reducido la funcional

tiempo a una función del punto intermedio~rint. Eligiendo el sistema de coordenadas tal

que el plano yz corresponde al que determinan los tres puntos~r0,~r1 y~rint tenemos

T(yint) =
n0

c

√
(y0 − yint)2 + z2

0 +
n1

c

√
(y1 − yint)2 + z2

1

Esto será un mínimo cuando se anule su derivada

dT
dyint

=
n0(y0 − yint)

c
√
(y0 − yint)2 + z2

0

+
n1(y1 − yint)

c
√
(y1 − yint)2 + z2

1

= 0

Usando un poco de trigonometría esto se puede reescribir como

dT
dyint

=
1
c
(n0 sinθ0 −n1 sinθ1) = 0

de donde inmediatamente se deduce la ley de Snell.
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Rayo real, tiempo mínimo

Rayos con interferencia

n0

n1

θ0

θ1

r⃗ 0

r⃗ 1

r⃗int

Figura 13.3.1: Principio de Fermat y ley de Snell. De entre todos los rayos de luz que pueden unir el punto

~r0 con el punto }vecr1, la mínima interferencia tiene lugar a lo largo del que cumple la ley de

Snell, que es el que toma tiempo mínimo según el principio de Fermat.

Nuevamente tenemos la situación un tanto extraña de que un sistema físico (en este caso el rayo

de luz) parece conocer el valor que tomaría el tiempo en trayectorias que no ha recorrido, de

manera de seleccionar como su trayectoria real aquélla donde su valor es mínimo.

Sin embargo, en el caso de la luz sabemos que la óptica geométrica, que nos permite hablar

de rayos de luz que cumplen el principio de Fermat, es sólo una aproximación. En realidad, la

luz es una onda que se propaga en el campo electromagnético que llena todos los puntos del

espacio, siendo el rayo de luz una aproximación a la línea de mínima interferencia, que sólo es

válida cuando la longitud de onda es muy pequeña comparada con los obstáculos del entorno.

Por lo anterior, podemos decir que la luz ha realmente explorado todas las trayectorias posibles

para determinar cuál es la del tiempo mínimo: se mueve como una onda que llena el espacio y que

interfiere destructivamente en todos lados menos a lo largo de dicha trayectoria. Para entender de

qué modo se realiza dicha exploración, debemos realizar la aproximación iconal.

Ejemplo: aproximación iconal

Imaginemos que queremos resolver la ecuación de onda en una región del espacio

donde la velocidad de la luz v es constante. Podemos escribir naturalmente una solución

con forma de onda plana

Φ(~r, t) = e−i(ωt−I(~r))

donde Φ es el potencial eléctrico, y I(~r) es una función conocida como iconal, que en

el caso de la onda plana se escribe en términos del vector de onda como I(~r) =~k ·~r.

Nótese que en este caso se cumple que ~∇I =~k y para la segunda derivada tenemos
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∇2I = 0 porque~k es constante.

Ahora bien, si la velocidad de la luz no es constante porque el medio cambia suavemente

sus propiedades de punto a punto, entonces la relación v|k|= ω implica que el vector

de onda~k =~∇I también cambiará suavemente ~∇ ·~k � k2. En otras palabras, tendremos

un iconal cuyo laplaciano no será nulo sino muy pequeño ∇2I � (∇I)2. Esto implica

que podemos escribir

~∇Φ =−iΦ~∇I

∇
2
Φ = Φ(−i∇2I − (∇I)2)≈−(∇I)2

Φ

Reemplazando estas derivadas en la ecuación de onda, obtenemos

∂
2
t Φ− v2

∇
2
Φ = (−ω

2 + v2(∇I)2)Φ = 0

Una solución de lo cual es

I(~r) = ω

∫ ~r dl
v

= ω T

donde la integral se calcula a lo largo de una curva cualquiera que une el punto inicial

y el punto final~r. La solución general de la ecuación incluye una superposición sobre

todas las soluciones que corresponden a las diferentes curvas. Sin embargo, todas

estas curvas interferirán destructivamente entre sí, con más interferencia cuanto mayor

sea su diferencia de camino óptico, que en nuestra solución está dada por la diferencia

entre sus correspondientes iconales. Para ver esto, escribamos

Φ = e−i(ωt−I1(r))+ e−i(ωt−I2(r))+ . . .

Donde cada término está calculado según la fórmula de arriba usando curvas distintas,

y los puntos suspensivos recorren todas las posibles curvas. Es fácil ver que para

cualquier par de términos tenemos I2 − I1 = ∆I siendo ∆I la diferencia de camino óptico

entre las curvas. Entonces podemos escribir

Φ = e−i(ωt−Imin(r))(1+ ei∆I1 + . . .)

Donde Imin es la solución para la cual el iconal es mínimo, y la suma recorre los diferentes

∆I entre cualquier otra curva y la que corresponde a Imin. Todos estos términos tienen

una fase no nula y por lo tanto contribuyen a la suma con un número de módulo menor

que uno y que cambia de signo a medida que recorremos diferentes curvas. Esto

resulta en una cancelación que solo deja el prefactor que contiene Imin.

Es decir que la solución que tendrá menos interferencia será aquélla cuyo iconal sea

más pequeño, de donde inmediatamente se deduce el principio de Fermat del tiempo

mínimo.
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Volviendo a la mecánica, la consecuencia de la discusión es inmediata: el principio de acción

estacionaria nos sugiere que tiene que existir algún tipo de onda asociada a cualquier sistema

mecánico. Esta onda se propaga en un medio que llena todo el espacio, de modo tal que su

interferencia es mínima a lo largo de las trayectorias que minimizan la acción. Es fácil imaginar

que se trata de la función de onda de Schrödinger.

Es decir que, con conocimientos que ya estaban disponibles durante el siglo XIX, era posible inferir

la existencia de una onda asociada a las partículas materiales. La Mecánica Clásica nos advierte

que debe existir una Mecánica Cuántica.

Nota

La películaArrival (2016) está basada en el maravilloso cuento del autor estadounidense

Ted Chiang titulado La historia de tu vida. En él, una raza extraterrestre llega a la Tierra,

y una lingüista y un físico intentan entablar comunicación con los visitantes.

Los primeros intentos resultan infructuosos, en parte debido al curioso sistema de

escritura de los extraterrestres, donde la frase parece tomar sentido solo después de

terminada, y de la cual nada dice una lectura parcial. Más aún, al intentar intercambiar

conceptos básicos de física, no parece haber entendimiento alguno. La situación

parece estancada, hasta que el físico menciona el principio de Fermat, el cual despierta

inmediatamente el interés de los visitantes.

Poco a poco, los investigadores se dan cuenta de que los extraterrestres no perciben

el tiempo como un devenir, sino como una imagen completa y simultánea de toda la

historia de vida de cada individuo.

Al aprender el lenguaje de los extraterrestres, la protagonista comienza a pensar como

ellos, en una realización de la tesis lingüistica conocida como hipótesis de Whorf-Sapir.

Según esta idea, el aprender un idioma nos nutre de una visión del mundo que estaba

imbuída en el mismo. Así, la lingüista del cuento experimenta en tiempo presente la

interacción con una hija que aún no ha nacido.

De ese relato proviene esta hermosa cita, que resume en pocas líneas el sentimiento

de impotencia que genera un hijo que aprende a caminar:

«Cuando aprendas a caminar tendré una demostración cotidiana de la asimetría de

nuestra relación. Correrás incesantemente de un lado para otro, y cada vez que choques

contra el marco de una puerta o te hagas un arañazo en la rodilla, sentiré el dolor como

si fuera mío. Será como si me creciera un miembro errante, una extensión de mí misma

cuyos nervios sensores transmiten el dolor perfectamente, pero cuyos nervios motores

no obedecen en absoluto mis órdenes. Es tan injusto: voy a dar a luz un muñeco vudú

de mí misma que está dotado de vida. No vi esto en el contrato cuando me apunté.

¿Era esto parte del trato?»
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Nota:

Entre sus invaluables contribuciones a la Mecánica, William Rowan Hamilton se ocupó

de la descripción de las rotaciones en términos de cuaterniones, que hoy es de gran

utilidad en la manipulación de gráficos tridimensionales en los juegos de computadora.

Cuenta la historia que la solución al problema de multiplicación de cuaterniones se le

ocurrió a Hamilton mientras paseaba con su esposa por la campiña irlandesa y, para

no olvidarla, la talló con su navaja en el puente de Brougham.

Una primera consecuencia del principio de mínima acción es que las ecuaciones de movimiento no

cambian si sumamos al lagrangiano la derivada total respecto del tiempo de una función arbitraria

de las coordenadas y el tiempo. Es decir si escribimos

L̃(q̇i,qi, t) = L(q̇i,qi, t)+
d
dt

F(qi, t)

con F(qi, t) una función cualquiera. Se puede probar directamente que las ecuaciones de Lagrange

resultantes para L̃ son iguales a las que teníamos para L. Sin embargo, es mucho más sencillo

hacerlo utilizando la acción

S̃[qi] =
∫ t1

t0
L̃(q̇i,qi, t) =

∫ t1

t0

(
L(q̇i,qi, t)+

d
dt

F(qi, t)
)
= S[qi(t)]+ F(qi, t)|t1t0

Donde vemos que al evaluar la acción en qi + εδqi tendremos que

S̃[qi + ε δqi] = S[qi + ε δqi]+ F(qi, t)|t1t0

ya que los términos con F están evaluados en los extremos de la trayectoria donde δqi = 0. Esto

implica que las derivadas funcionales, que se obtienen del término lineal en ε , serán iguales. Luego

las ecuaciones de Lagrange que se derivan de S̃[qi] coincidirán con las que se obtienen de S[qi].

13.3.1 Acción para las ecuaciones de Hamilton

Como vimos en las clases precedentes, el movimiento de un sistema mecánico puede también

ser descripto en términos de ecuaciones de Hamilton, según

ṗi =−∂H
∂qi

q̇i =
∂H
∂ pi

Donde H(pi,qi, t) es el hamiltoniano del sistema, a partir del cual podemos obtener un lagrangiano

como la transformada de Legendre del respecto de los impulsos. Para esto, invertimos la primera

ecuación para obtener pi = wi(q̇ j,q j, t) y escribimos

L(q̇ j,q j, t) = q̇iwi(q̇ j,q j, t)−H(wi(q̇ j,q j, t),qi, t)

Por supuesto, al usar este lagrangiano en el principio de acción estacionaria obtendremos las

ecuaciones de Lagrange correspondientes. Sin embargo, es natural preguntarnos si podríamos

obtener directamente las ecuaciones de Hamilton a partir de una condición de acción estacionaria
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para algún lagrangiano adecuado. Para probar esto, modificamos la fórmula anterior definiendo

un nuevo lagrangiano de primer orden, según

L1er(p j, q̇ j,q j, t) = q̇i pi −H(pi,qi, t)

En esta nueva expresión, los impulsos no son funciones de las coordenadas y velocidades sino

que son magnitudes independientes. Podemos usar este lagrangiano en una acción, según

S1er[pi,qi] =
∫ t1

t0
dt L1er(p j, q̇ j,q j, t)

Para obtener las derivadas funcionales de esta acción, tenemos que perturbar no solo las coorde-

nadas qi + ε δqi sino también los impulsos pi + ε δ pi, de modo de poder escribir

S1er[pi + ε δ pi,qi + ε δqi] = S1er[pi,qi]+ ε

∫ t1

t0
dt
((

q̇i −
∂H
∂ pi

)
δ pi −

(
ṗi +

∂H
∂qi

)
δqi

)
+ δqi|t1t0

Si asumimos que δqi(t0) = δqi(t1) = 0, obtenemos la condición de acción estacionaria en la forma

de las ecuaciones de Hamilton.

13.3.2 Generalización de los sistemas mecánicos

Hasta este punto, hemos construido sistemas mecánicos a partir de un conjunto de partículas que

interactúan mediante fuerzas bastante generales, y eventualmente imponiendo vínculos sobre

el Lagrangiano resultante. Sin embargo, es lícito hacerse la pregunta de si esos son todos los

sistemas mecánicos que pueden existir.

En esta clase hemos aprendido que las ecuaciones de Lagrange que obedecen la totalidad de

los sistemas que conocemos, pueden obtenerse a partir de un principio de acción estacionaria.

En estos sistemas, la acción está dada por una funcional de las trayectorias de un tipo bastante

especial.

Llegamos entonces a la siguiente cuestión ¿qué pasa si definimos la acción en términos de

funcionales más generales? ¿obtendremos tal vez sistemas mecánicos que no correspondan a

sistemas newtonianos de partículas componentes?

En los ejemplos que siguen veremos algunas posibilidades, junto con sus dificultades y virtudes.

Ejemplo: sistemas en derivadas mayores.

El principio de acción estacionaria permite definir sistemas mecánicos cuyas ecuacio-

nes de movimiento contienen derivadas temporales de orden mayor al segundo. Por

ejemplo, podemos estudiar un sistema cuya acción se lee

S[qi] =
∫ t1

t0
dt L(q̈i, q̇i,qi, t)

Si tuviéramos que escribir las ecuaciones de movimiento para un lagrangiano depen-

diente de q̈i no sabríamos cómo hacerlo. Sin embargo, con el principio de acción
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estacionaria el problema se vuelve sencillo: hay que obtener el cambio de la acción a

primer orden bajo la variación qi(t)+ εδqi(t) y pedir que sea nulo. Para esto hacemos

S[qi + εδqi] = S[qi]+ ε

∫ t1

t0
dt
(

∂L
∂ q̈i

δ̈qi +
∂L
∂ q̇i

δ̇qi +
∂L
∂qi

δqi

)
De aquí podemos identificar el coeficiente δS del término lineal en ε, el cual después

de algunas integraciones por partes queda escrito en la forma

δS=
∫ t1

t0
dt
(

d2

dt2

(
∂L
∂ q̈i

)
− d

dt

(
∂L
∂ q̇i

)
+

∂L
∂qi

)
δqi

Donde hemos usado que δqi(t1) = δqi(t2) = 0 y hemos impuesto la condición adicional

δ̇qi(t1) = δ̇qi(t2) = 0. Las ecuaciones de movimiento resultantes son entonces

d2

dt2

(
∂L
∂ q̈i

)
− d

dt

(
∂L
∂ q̇i

)
+

∂L
∂qi

= 0

Esto se puede generalizar sin dificultad para sistemas de orden arbitrario.

Sin embargo, un punto interesante es que todos los sistemas de orden superior tienen

una inestabilidad conocida como fantasma de Ostrogradsky que los vuelve poco

útiles para representar situaciones físicas realistas. No vamos a exponer aquí una

demostración general, sino solo un ejemplo: sea el sistema

S=
∫ t1

t0
dt
(

1
2

q̈2 − 1
2

α
4q2
)

Su ecuación de movimiento será, de acuerdo a lo que vimos más arriba

d4q
dt4 −α

4q = 0

Complexificando esta ecuación y proponiendo la solución de prueba q(t) = eiωt , obtene-

mos ω4 = α4 o en otras palabras ω =±α y ω =±iα . Es decir que, independientemente

de que α sea real o imaginario, tendremos soluciones exponenciales crecientes, que

corresponden a una inestabilidad. Esto sucede incluso si cambiamos el signo delante

de α4 en el lagrangiano.

Se puede probar, realizando una expansión del lagrangiano en torno a una solución

cualquiera en el estilo de las que investigamos en el capítulo 12, que esta inestabilidad

aparece de modo completamente general de este tipo de sistemas.

Ejemplo: sistemas no locales en el tiempo.

Otro tipo de sistemas cuyas ecuaciones de movimiento podemos obtener a partir del

principio de mínima acción, son sistemas no locales en el tiempo. Supongamos una

acción del tipo

S[qi] =
∫∫

dt dt ′ L(q̇i(t), q̇i(t ′),qi(t),qi(t ′), t, t ′)

Aquí el lagrangiano depende del estado del sistema en dos tiempos diferentes. De

nuevo, no podríamos escribir sus ecuaciones de Lagrange sin contrar con algún
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principio adicional que nos ayude a determinar su forma. Con el principio de acción

estacionaria en cambio, esto es relativamente sencillo, resultando en las ecuaciones

de movimiento∫ t1

t0
dt ′
(

∂ L̃
∂qi(t)

− d
dt

(
∂ L̃

∂ q̇i(t)

)
+

∂L
∂qi(t)

− d
dt

(
∂L

∂ q̇i(t)

))
= 0

Donde en L̃ = L(q̇i(t ′), q̇i(t),qi(t ′),qi(t), t ′, t) se han intercambiado t y t ′.

Sin embargo, estos sistemas tienen problemas de causalidad. Esto se puede ver con

un ejemplo sencillo definido en términos de una función K(t, t ′) según

S=
∫∫

dt dt ′
(

1
2

q̇2 − 1
2

K(t, t ′)q(t)q(t ′)
)

La ecuación de movimiento que se obtiene de aquí es, usando la fórmula de más arriba

q̈(t) =
1
2

∫
dt ′
(
K(t, t ′)q(t ′)+K(t ′, t)q(t)

)
Aquí vemos que la aceleración de q en el tiempo t depende no sólo de la historia

pasada del sistema, es decir de t ′ < t, sino también de su historia futura t ′ > t. Esto no

se puede evitar eligiendo de ningún modo la función K(t, t ′). Este es un problema que

aparece de manera general en estos sistemas.

Vemos que el principio de acción estacionaria nos permite definir sistemas mecánicos mucho más

generales que los que veníamos discutiendo, pero que esta libertad trae en general aparejados

diversos problemas que pueden ser difíciles de controlar.

Vamos a ver a continuación varios ejemplos en los que la generalización sí funciona, y nos abre la

puerta a un universo de teorías físicas que se pueden expresar como sistemas mecánicos: las

teorías clásicas de campos.

Ejemplo: ecuación de onda

Supongamos que queremos analizar un sistema que obedece a la ecuación de ondas

en una dimensión

c2u′′− ü = 0

donde c es la velocidad de la onda. Podría tratarse por ejemplo de las ondas en una

cuerda estirada entre dos soportes, o de las ondas de sonido en un medio material.

Con esta ecuación podemos conocer el estado del sistema u(x, t) a partir de su estado

inicial u(x,0). Podríamos entonces imaginarnos que se trata de un sistema mecánico

con coordenadas

u(x, t) = qx(t)

Es decir que el índice de coordenada es ahora un índice continuo. Esta interpretación

hace natural que nos preguntemos ¿podremos escribir una acción para la ecuación de
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ondas? Deberíamos tener algo con la forma

S[qx] = S[u] =
∫ t1

t0
dt L

Dado que la acción no puede tener dependencia en x, debería haber una integral en

esta variable, algo así como

S[u] =
∫ t1

t0
dt
∫

dxL︸ ︷︷ ︸
L

Donde hemos escrito al lagrangiano en forma de la integral espacial de una densidad

lagrangiana L . Para intentar darle una forma concreta a esta magnitud, hagamos el

siguiente análisis:

Las ecuaciones se obtienen tomando derivadas del lagrangiano respecto de las

coordenadas y velocidades generalizadas. Es decir que si la ecuación es lineal,

la acción no puede tener potencias superiores a la cuadrática.

Todos los términos de la acción deben tener las mismas unidades, es decir que si

incluimos un término con u̇2 debe estar combiando con c2u′2.

La ecuación no tiene un términos sin derivadas, por lo que no debemos incluir en

la acción términos que dependan sólo de u.

Si pusiéramos términos cruzados u′u o uu̇ o u′u̇ aparecerían terminos de primer

orden en derivadas o con derivadas segundas.

Con todo esto, podemos proponer la siguiente forma para la acción

S[u] =
1
2

∫ t2

t1
dtdx

(
u̇2 − c2u′2

)
︸ ︷︷ ︸

L

Para comprobar que de su variación se obtiene la ecuación de onda, la evaluamos en

u+ εδu y desarrollamos en potencias de ε, obteniendo

S[u+ εδu] = S[u]+ ε

∫ t1

t0
dtdx

(
u̇δ u̇− c2u′ δu′

)
con lo que podemos aislar el término lineal en la forma

δS=
∫ t1

t0
dtdx

(
u̇δ u̇− c2u′ δu′

)
Integrando por partes en ambos términos, obtenemos

δS=
∫ t1

t0
dtdx

(
c2u′′− ü

)
δu+

∫
dx(u̇δu)|t1t0 + c2

∫
dt(u′ δu)|x1

x0

y usando el hecho de que las variaciones deben anularse en el instante inicial y final,

es decir que δu(x, t0) = δu(x, t1) = 0 para cualquier valor de x, tenemos

δS=
∫ t1

t0
dtdx

(
c2u′′− ü

)
δu+ c2

∫
dt(u′δu)|x1

x0
= 0
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Pero dado que δu es una función arbitraria, esto implica que para que δS se anule

deben anularse los factores dentro de cada integrando. En otras palabras

c2u′′− ü = 0

(u′δu)|x1
x0
= 0

Con lo que hemos tenido éxito en obtener la ecuación de onda a partir de nuestra

acción, pero además obtuvimos una condición de contorno en los extremos de la

cuerda en la cual se propaga la onda. Esta condición se puede resolver pidiendo que

se cumpla

u′(x0) = u′(x1) = 0

lo que corresponde a imponer condiciones de contorno de Neumann. Otra opción es

pedir que las variaciones δu cumplan la restricción

δu(x0) = δu(x1) = 0

lo que se resuelve en términos de dos constantes u0 y u1 en la forma

u(x0) = u0 u(x1) = u1

con lo que vemos que no es otra cosa que imponer condiciones de contorno de Dirichlet.

En otras palabras, la condición de acción estacionara para la acción que hemos

propuesto más arriba no solo resulta en la ecuación de onda, sino también sus posibles

condiciones de contorno. Nótese que hubiérmos podido incluir términos de borde en

nuestra acción original, que solo dependieran de los valores de u en x0 y x1, y en tal

caso hubiéramos obtenido condiciones de contorno diferentes.

Ejercicio: ecuación de onda en tres dimensiones

Pruebe que la ecuación de onda en tres dimensiones se puede obtener de la acción

S[u] =
1
2

∫
Ω

d3xdt
(

u̇2 − c2(~∇u)2
)

La integral espacial está calculada dentro de una región del espacio Ω ¿cuáles serán

las condiciones de contorno resultantes de esta acción en el borde ∂Ω de dicha región

espacial?

Ejemplo: acción para las ecuaciones de Maxwell

El tipo de acción que escribimos para la ecuación de onda se puede formular también

para sistemas continuos más generales. Por ejemplo, para el electromagnetismo

podemos proponer una acción de la forma

S[Φ,~A] =
1
2

∫
Ω

d3xdt
(
~E2 − c~B2

)
=

1
2

∫
d3xdt

((
−~∇Φ+

1
c

∂t~A
)2

− 1
c
(~∇×~A)2

)
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Donde estamos integrando en una región tridimensional del espacio que hemos llamado

Ω. Para encontrar el punto estacionario de esta funcional escribimos ~A+ε ~δA y Φ+ε δΦ,

con lo cual

δS=
∫

d3xdt
(
~E ·δ~E − c~B ·δ~B

)
=
∫

d3xdt
(
~E ·
(
−~∇δΦ+

1
c

∂tδ~A
)
−~B · (~∇×δ~A)

)
Integrando por partes todas las derivadas, y usando el hecho de que δ~A se anula en

los instantes inicial y final, tenemos

δS=
∫

d3xdt
(
~∇ ·~E δΦ+δ~A ·

(
1
c

∂t~E −~∇×~B
))

+
∫

∂Ω

dt d~S ·
(
~E δΦ+δ~A×~B

)
donde la notación ∂Ω significa el borde de la región Ω. De aquí se deducen la ecuaciones

de Maxwell

~∇ ·~E = 0 ~∇×~B− 1
c

∂t~E = 0

junto con las condiciones de contorno

~E · ňδΦ|∂Ω = 0 (~B× ň) ·δ~A|∂Ω = 0

donde ň es un vector unitario perpendicular al borde ∂Ω. Éstas se pueden traducir en

condiciones de conductor perfecto

Φ|∂Ω = Φ0 ~A|∂Ω = ~A0

o de dieléctrico perfecto

~E · ň|∂Ω = 0 (~B× ň)|∂Ω = 0

En otras palabras, el principio de acción estacionaria nos permite considerar al electro-

magnetismo como un sistema mecánico con coordenadas {qx}= {Φ(x),Aa(x)}.

Ejercicio: densidades de carga y corriente

Pruebe que si quisiéramos incluir una densidad de carga ρ y una densidad de corriente

~j en las ecuaciones de Maxwell, la acción correcta vendría dada por

S=
1
2

∫
d3xdt

(
~E2 − c~B2 +Φρ − 1

c
~A ·~j

)

Ejemplo: ecuación de Schrödinger libre

Otro ejemplo de un sistema continuo es el aquél cuyas ecuaciones de movimiento se

obtienen a partir de la condición de punto estacionario de la acción

S=
∫

d3xdt
(
}2

2m
~∇Ψ ·~∇Ψ

∗−}i∂tΨΨ
∗
)
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donde Ψ es una coordenada generalizada compleja. La acción debe derivarse respecto

de la parte real y la parte imaginaria de Ψ, o equivalentemente respecto de Ψ y de Ψ∗.

Esto resulta en

δS=
∫

d3xdt
(
}2

2m

(
~∇Ψ ·~∇δΨ

∗+~∇δΨ ·~∇Ψ
∗
)
−}i(δ∂tΨΨ

∗+∂tΨδΨ
∗)

)
Integrando por partes y reordenando

δS=
∫

d3xdt
((

− }2

2m
∇

2
Ψ−}i∂tΨ

)
δΨ

∗+

(
− }2

2m
∇

2
Ψ

∗+}i∂tΨ
∗
)

δΨ

)
+

+
∫

∂Ω

dt d~S ·
(

δΨ~∇Ψ
∗+δΨ

∗~∇Ψ

)
De donde sale la ecuación de Schrödinger para una partícula libre

− }2

2m
∇

2
Ψ = }i∂tΨ

(y su conjugada compleja) junto con las condiciones de contorno

δΨ~∇Ψ
∗ · ň|∂Ω = 0

(y su conjugada compleja). Esta condición se puede escribir como la que corresponde

a una pared infinita de potencial

Ψ|∂Ω = 0

En otras palabras la ecuación de Schrödinger, que describe la función de onda cuántica

de una partícula, es en sí misma un sistema mecánico clásico. Esta observación, que

puede en principio parecer un poco paradójica, da origen a la Teoría Cuántica de

Campos, que se aplica extensivamente en física de partículas y en el área de materia

condensada, para describir sistemas cuánticos locales.

Ejercicio: ecuación de Schrödinger con un potencial

Pruebe que la ecuacion de Schrödinger en presencia de un potencial V (~r) se obtiene a

partir de la acción

S=
∫

d3xdt
(
}2

2m
~∇Ψ ·~∇Ψ

∗−}i∂tΨΨ
∗+V (~r)ΨΨ

∗
)

Si estamos describiendo una partícula cargada tenemos que V (~r) = eΦ(~r) siendo e la

carga de la partícula y Φ(~r) el potencial eléctrico ¿qué sucede si sumamos esta acción

a la que escribimos más arriba para las ecuaciones de Maxwell?

Todos los ejemplos anteriores corresponden a sistemas continuos, es decir aquéllos donde las

coordenadas son campos que toman un valor en cada punto del espacio. En el caso general, si

tenemos un conjunto arbitrario de campos qn(~r, t), la acción se escribirá

S[qn] =
∫

Ω

d3xdt L (qn(~r, t),∂tqn(~r, t),~∇qn(~r, t),~r, t)
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en términos de una densidad lagrangiana L (qn,∂tqn,~∇qn,~r, t), integrada en la región espacial Ω

en la que está definido el sistema. Las ecuaciones de Lagrange resultantes del principio de acción

estacionaria para este sistema toman la forma

∂

∂ t

(
∂L

∂ (∂tqn)

)
+

∂

∂xa

(
∂L

∂ (∂aqn)

)
− ∂L

∂qn
= 0

y deben ser suplementadas con las condiciones de contorno

ňa
∂L

∂ (∂aqn)
δqn

∣∣∣∣
∂Ω

= 0

donde ň es un vector normal al borde de la región Ω.

Ejercicio: condiciones de borde arbitrarias

Pruebe que sumando a la acción un término evaluado en el borde

∆S=
∫

∂Ω

dt dSa (Kab(qn(~r, t),~r, t)∂bqn(~r, t)+Sa(qn(~r, t),~r, t))

con Kab(qn,~r, t) y Sa(qn,~r, t) funciones de los campos, las coordenadas y el tiempo, las

condiciones de contorno se modifican. Escriba la forma resultante de las mismas.

13.4 Resumen

Hemos investigado el principio de acción estacionaria, que permite encontrar las ecuaciones de

Lagrange como las que corresponden al punto estacionario de una funcional acción, que está

definida como la integral temporal del lagrangiano.

Vimos que este principio hace evidente que la mecánica de Newton debe necesariamente estar

contenida dentro de una teoría de ondas, como el límite de óptica geométrica en el que las

trayectorias de las partículas corresponden a los rayos.

Usamos el principio de acción estacionaria para proponer generalizaciones de la mecánica más allá

de la mecánica de partículas. Vimos que varias de esas generalizaciones conducen a situaciones

físicamente irreales. Sin embargo, vimos encontramos también una de ellas, la generalización

a sistemas continuos, que nos permite englobar dentro de los sistemas mecánicos una enorme

variedad de teorías físicas.



14. Simetrías

14.1 Objetivos

Emmy Noether

En esta clase definiremos la idea de simetría de un sis-

tema mecánico y estudiaremos sus consecuencias.

En particular, estaremos interesados en formalizar la

relación entre simetrías y cantidades conservadas que

mencionamos en varias ocasiones en las clases previas.

Para esto, formularemos y aplicaremos el teorema de

Noether, que nos permitirá comprender las leyes de con-

servación de la naturaleza desde una óptica mucho más

general.

Los resultados que presentaremos aquí se encuentran

entre los más importantes de la física teórica, trascendien-

do ampliamente el área de la Mecánica y aplicándose en

contextos mucho más generales.

14.2 Simetrías

Motivemos la idea intuitiva de simetría con una situación hipotética sencilla. Un jugador de fútbol

patea una pelota en dirección al arco. Si la pelota es esférica, esperamos que el resultado sea el

mismo independientemente de si la hacemos girar o no unos pocos grados antes del puntapié. Si

el resultado fuera diferente luego de tal rotación, diríamos que la pelota está ovalada, es decir que

ha perdido su carácter simétrico.
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El ejemplo pone de manifiesto que la idea de simetría está asociada a la insensibilidad de un

sistema físico frene a alguna transformación: el sistema evoluciona exactamente del mismo modo,

independientemente de si aplicamos o no la transformación antes del inicio del movimiento.

Esto se puede formalizar como sigue: una simetría de un sistema mecánico es un cambio de

coordenadas qi(t) → q̃i(t) = si(q j(t), t) que conmuta con la evolución temporal. Esta definición

puede entenderse en el siguiente esquema

cambio de variables

qi(t) −−−−−−−−−−→ q̃i(t) = si(q j(t), t)

evolución temporal

y y
qi(t +δ t) −−−−−−−−−−→ q̃i(t +δ t) = si(q j(t +δ t), t +δ t)

O sea que si hacemos el cambio de variables en el instante t, y luego dejamos evolucionar el

sistema, obtenemos después de un cierto tiempo δ t el mismo valor para las nuevas variables

que hubiéramos obtenido de transformar las variables originales directamente en ese instante.

Podríamos decir que el sistema no reacciona al cambio de variables, resultando en la misma

configuración tanto si lo hemos realizado antes de la evolución, como si lo hacemos después.

En términos de las ecuaciones de movimiento, la definición implica que las coordenadas transforma-

das q̃i deben evolucionar con las mismas ecuaciones que las coordenadas originales qi. Sabemos

de la clase previa que esto sucede cuando el lagrangiano para las q̃i difiere del lagrangiano para

las qi en una derivada total

L( ˙̃qi, q̃i, t) = L(q̇i,qi, t)+
d
dt

F(qi, t)

Siendo F(qi, t) alguna función que dependerá del cuál sea el cambio de variables en cuestión. En

términos de la acción, se debe cumplir que

S[q̃i] = S[qi]+ F(qi(t), t)|t2t1

Las simetrías pueden ser discretas, es decir definidas a través de un cambio de variables del tipo

qi → q̃i = si(qi, t)

donde si(qi, t) es una función determinada. Las simetrías también pueden ser continuas, si el

cambio de variables tiene la forma

qi → q̃i = si(qi, t; ε)

donde ahora la función si(qi, t; ε) depende de un parámetro real ε. Si para un valor dado del

parámetro, que sin pérdida de generalidad podemos elegir como ε = 0, la transformación es la
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identidad si(qi, t; 0) = qi entonces decimos que la transformación dada por si(qi, t; ε) es conexa con

la identidad. Esto nos permite desarrollar en potencias del parámetro ε

qi → q̃i = qi + ε gi(qi, t)+O(ε)2

En esta expresión, las funciones gi(qi, t) que determinan el primer orden del desarrollo se llaman

los generadores de la simetría.

14.2.1 Teorema de Noether

En el caso de las simetrías continuas. el hecho de que la acción es invariante a menos de una

derivada total tiene consecuencias muy importantes y útiles. En efecto, si escribimos

S[q̃i] = S[qi + ε gi] =
∫ t1

t0
L(q̇i + ε ġi(qi, t), qi + εgi(qi, t), t)

En esta expresión podemos expandir el lagrangiano a primer orden en el parámetro infinitesimal ε ,

para obtener

S[q̃i] =
∫ t1

t0
L(q̇i,qi, t)+ ε

∫ t1

t0

(
∂L
∂ q̇i

ġi(qi, t)+
∂L
∂qi

gi(qi, t)
)

El primer término no es otra cosa que S[qi]. En cuanto al segundo, podemos integrarlo por partes

para eliminar la derivada temporal que actúa sobre los generadores. Esto resulta en la expresión

S[q̃i] = S[qi]+ ε

∫ t2

t1

(
− d

dt

(
∂L
∂ q̇i

)
+

∂L
∂qi

)
gi(qi, t)+ ε

(
∂L
∂ q̇i

gi(qi, t)
)∣∣∣∣t2

t1

Observemos aquí que la expresión en paréntesis bajo el signo integral se anula cuando se

satisfacen las ecuaciones de movimiento. Por lo tanto, evaluada en las soluciones la expresión

toma la forma

S[q̃i] = S[qi]+ ε

(
∂L
∂ q̇i

gi(qi, t)
)∣∣∣∣t2

t1

Comparando con la expresión que habíamos escrito más arriba para la acción transformada,

podemos identificar los términos de borde que antes habíamos habíamos expresado en términos

de nuestra función F(qi, t). Tenemos que

ε

(
∂L
∂ q̇i

gi(qi, t)
)∣∣∣∣t2

t1

= F(qi, t)|t2t1

lo que se puede reordenar como(
ε

∂L
∂ q̇i

gi(qi, t)−F(qi, t)
)∣∣∣∣

t1

=

(
ε

∂L
∂ q̇i

gi(qi, t)−F(qi, t)
)∣∣∣∣

t2

Es decir que la magnitud entre paréntesis se conserva durante la evolución temporal. Esta magnitud

se llama carga conservada asociada a la simetría gi(qi, t), y se denota como

C = ε
∂L
∂ q̇i

gi(qi, t)−F(qi, t)
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La construcción que hemos realizado se denomina teorema de Noether y está entre los resultados

más trascendentes del curso de Mecánica Analítica. Lo que dice este teorema es que cada vez

que haya una simetría continua en un sistema físico, existirá una magnitud que se conserva a lo

largo de toda su evolución temporal.

Vamos ahora a enumerar algunos ejemplos de aplicación del teorema de Noether, que nos llevarán

a revisitar resultados de los cursos básicos de física bajo esta nueva óptica.

Dado un sistema físico definido a partir de su lagrangiano, la receta general consiste en identificar

sus simetrías continuas y escribir su forma infinitesimal. De este modo podemos aislar sus genera-

dores gi(qi, t) y observar qué forma toma el término de borde F(qi, t). Con estos dos elementos,

estamos en condiciones de escribir la cantidad conservada C usando la fórmula de más arriba.

Ejemplo: invarianza traslacional

Supongamos una partícula no relativista descripta por las coordenadas cartesianas xa

que se mueve de acuerdo a un lagrangiano de la forma

L =
1
2

mẋ2
a −V (xa)

Vamos a suponer que el lagrangiano es invariante bajo una transformación de traslación

xa → x̃a = xa + ε ňa

donde ň es un vector unitario que nos indica la dirección de la traslación, y ε es un

parámetro que toma valores reales arbitrarios.

Esta invarianza es inmediatamente cierta para el término cinético, ya que la velocidad no

cambia al sumar a xa una constante ˙̃xa = ẋa, y para el potencial implica que V (xa+ε ňa) =

V (xa). Para entender el significado de esta condición, escribamos

V (xa + ε ňa)−V (xa) = ε ňa
∂V
∂xa

=−ε ň ·~F = 0

En otras palabras, que el potencial sea invariante frente a traslaciones en la dirección

ň implica que la fuerza en esa dirección se anula.

Si ahora reemplazamos el cambio de coordenadas directamente en la acción, vemos

que se cumple

S[xa] = S[x̃a]

Por lo tanto tenemos el caso particular de una simetría para la cual el término de borde

se anula F(xa, t) = 0.

Para obtener explícitamente el generador, escribimos la forma infinitesimal de la trans-

formación según

x̃a = xa + εga(xb, t) con ga(xb, t) = ňa
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Con esto se puede escribir inmediatamente la carga conservada de acuerdo a la

fórmula que obtuvimos más arriba, en la forma

C = ε
∂L
∂ ẋa

ga(xb, t)−F(xb, t) = ε ňa mẋa = ε ň ·~p

de donde vemos que hemos recuperado la ley de conservación del momento lineal:

cuando la fuerza en una dirección cartesiana se anula, el momento lineal en esa

dirección se conserva.

Nótese que la reformulación que hemos obtenido tiene un significado mucho más abar-

cativo: relaciona la conservación del impulso lineal en una dada dirección del espacio

con la invarianza de traslaciones en esa misma dirección. Se deduce inmediatamente

que cada vez que exista invarianza de traslaciones, independientemente del sistema

físico particular que estamos analizando, existirá un análogo al impulso lineal para ese

sistema, que se conservará a medida que transcurre el movimiento.

Ejemplo: coordenadas cíclicas

El resultado anterior se puede generalizar de un modo muy sencillo para dar cuenta de

la conservación del momento generalizado asociado a una coordenada generalizada

que es cíclica. En efecto, una traslación en una coordenada generalizada qi se puede

escribir como

qi → q̃i = qi + ε

Considerar ε como una variable infinitesimal nos permite identificar el generador, de

acuerdo a

q̃i = qi + εgi(qi, t) con gi(qi, t) = 1

Ahora bien, dado que la coordenada es cíclica, entonces el lagrangiano es invariante

bajo esta transformación. Esto resulta en que la acción también es invariante, por lo que

la función F(qi, t) será nula. Con esto, la carga conservada asociada a esta invarianza

será

C = ε
∂L
∂ q̇i

gi(qi, t) = ε pi

En otras palabras: cuando una coordenada generalizada es cíclica, el momento gene-

ralizado correspondiente se conserva.

Conocíamos este resultado de las clases anteriores. El punto importante es que aquí

lo hemos reobtenido no mediante examen de las ecuaciones de Lagrange, sino a partir

del teorema de Noether. Es decir, ahora sabemos que la presencia de una coordenada

cíclica implica una simetría frente a traslaciones en esa coordenada, lo que resulta en

una carga conservada.
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Ejemplo: invarianza rotacional

Según vimos oportunamente, una rotación en ángulo θ alrededor del eje determinado

por un versor ň se escribe usando la fórmula

~r →~̃r = (~r · ň) ň+ sinθ ň×~r+ cosθ (~r− (~r · ň) ň)

Lo cual, aplicado a una partícula descripta en coordenadas cartesianas por el vector~r,

implica para su velocidad

~̇̃r = (~̇r · ň) ň+ sinθ ň×~̇r+ cosθ
(
~̇r− (~̇r · ň) ň

)
Escribiendo el lagrangiano de dicha partícula en la forma

L =
1
2

m~̇r2 −V (~r)

el término de energía cinética queda inmediatamente invariante m~̇̃r2/2 = m~̇r2/2. Por

otro lado, si se cumple que el potencial también queda invariante V (~̃r) =V (~r) podemos

decir que las rotaciones en torno al eje ň son una simetría del sistema. En particular

esto resulta en que tenemos

S[~̃r] = S[~r]

por lo que nuevamente se trata de una simetría con un término de borde nulo F(~x, t) = 0.

Para encontrar el generador, desarrollamos la fórmula que escribimos más arriba en

potencias del ángulo θ = 0+ ε, obteniendo a primer orden

x̃a = xa + ε εabcnbxc = xa + ε ga(x)

En términos del generador ga(x) = εabcnbxc. Con esto, podemos escribir la cantidad

conservada, dada por

Cň = ε
∂L
∂ ẋa

ga(x) = ε mẋaεabcnbxc = ε nb εabcxc pa︸ ︷︷ ︸
(~x×~p)b=Lb

= ε ň ·~̀

Vemos que corresponde a la componente del momento angular a lo largo del eje de

rotación.

Para entender lo que esto significa, reescribamos la condición de invarianza del poten-

cial para una rotación infinitesimal

V (~̃r)−V (~r) = ε nb εabcxc
∂V
∂xa︸ ︷︷ ︸

τb

= ε ň ·~τ = 0

donde ~τ es el torque respecto del origen. Es decir que un potencial invariante frente a

rotaciones alrededor de ň implica que el torque en esa dirección se anula.

Esto nos dice que hemos reobtenido la ley de conservación del momento angular. De

nuevo, el significado es ahora mucho más profundo: la conservación del momento

angular se relaciona con la invarianza de rotaciones, y habrá un momento angular

conservado en cualquier sistema que tenga tal invarianza, independientemente de la

forma particular de su lagrangiano.
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Ejemplo: invarianza frente a traslaciones temporales

La transformación de traslación temporal se define como

t → t̃ = t + ε

donde ε puede tomar cualquier valor real. Nótese que no se trata de una transformación

de las coordenadas generalizadas del sistema, sino de la variable independiente t, que

en la acción cumple el rol de la variable de integración.

Por lo tanto, no estamos en las condiciones supuestas más arriba para la aplicación

del teorema de Noether. En efecto, habíamos definido una simetría como un cambio

en las coordenadas generalizadas que puede eventualmente depender del tiempo,

pero no habíamos incluido la posibilidad de un cambio en el tiempo.

Para resolver esto, podemos promover t a una coordenada generalizada si hacemos

un cambio de variables t(τ) en términos de un nuevo parámetro τ que caracteriza

la evolución temporal y que cumplirá el rol de variable de integración. La acción se

reescribe como

S[qi, t] =
∫

τ2

τ1

dτ t ′(τ)L
(

1
t ′

q′i(τ),qi(τ), t(τ)
)

︸ ︷︷ ︸
L̂(q′i(τ),qi(τ),t ′(τ),t(τ))

=
∫

τ2

τ1

dτ L̂(q′i(τ),qi(τ), t ′(τ), t(τ))

Con lo que obtenemos un nuevo lagrangiano L̂, donde ahora t entra en pie de igualdad

con las coordenadas generalizadas qi. Es fácil demostrar que a partir de las ecuaciones

de Lagrange de este lagrangiano

d
dτ

∂ L̂
∂q′i

− ∂ L̂
∂qi

= 0
d

dτ

∂ L̂
∂ t ′

− ∂ L̂
∂ t

= 0

se recuperan las ecuaciones originales en términos de t.

Con L̂ podemos construir la carga conservada asociada a la traslación temporal apli-

cando el procedimiento de Noether. Primero identificamos el generador dada la regla

de transformación

t̃ = t + ε

de donde se ve que g(qi, t) = 1. Por otro lado el lagrangiano L̂ será invariante siempre

que el lagrangiano original L sea independiente del tiempo, con lo que obtenemos una

vez más F(qi, t) = 0. Con esto tenemos para la carga conservada la expresión

C = ε
∂ L̂
∂ t ′

= ε

(
L+ t ′

∂L
∂ t ′

)
= ε

(
L− 1

t ′
∂L
∂ q̇i

q′i

)
La última expresión se puede reescribir como

C = ε

(
L− ∂L

∂ q̇i
q̇i

)
= ε (L− piq̇i) =−ε E

Con lo que la carga conservada es la energía mecánica del sistema, según la definición

general que habíamos dado en la sección 2.2.4
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De nuevo, un teorema de conservación que habíamos encontrado simplemente explo-

rando las ecuaciones de movimiento, ahora aparece claramente ligado a una simetría

del sistema mecánico.

Nota:

Según la visión moderna de la naturaleza, si conocemos las coordenadas generalizadas

de un sistema físico y las simetrías que las transforman, estaremos en condiciones

de construir un lagrangiano que describa completamente la dinámica, bajo el único

requerimiento de que sea invariante frente a las simetrías.

En este sentido, la descripción más precisa que tenemos hoy en día de la estructura

del universo dice que debe ser invariante localmente frente a rotaciones, traslaciones

y tranformaciones de Lorentz. Estas simetrías constituyen el grupo conocido como

SO(3,1) o grupo de Poincaré.

Por otro lado, los experimentos con aceleradores nos permiten elucidar que la física a

escala nuclear es invariante frente al grupo SU(3)×SU(2)×U(1).

Combinando esa información se construye el lagrangiano para el Modelo Standard de

las Interacciones Fundamentales que permite hacer predicciones muy precisas sobre

la física fundamental.

14.3 Resumen

En esta clase formulamos la idea de simetría de un sistema mecánico y demostramos el teorema

de Noether, que dice que cada vez que existe una simetría continua hay una magnitud o carga

que se conserva a lo largo de todo el movimiento.

Este teorema es probablemente el resultado más trascendente que se aprende durante la Licenci-

tatura. Se generaliza a sistemas continuos dando lugar a la idea de corrientes conservadas. Es un

teorema que sigue valiendo a nivel cuántico, y que yace en la base de la formulación de todas

las teorías físicas modernas. Se debe a la matemática alemana Emmy Noether, de quien Albert

Einstein dijo

«La señorita Noether fue el genio matemático creativo más importante que haya existido

desde que comenzó la educación superior para las mujeres.»

A pesar de esto, por alguna razón Emmy Noether es injustamente olvidada con demasiada

frecuencia en los recuentos del aporte de las mujeres al conocimiento científico.
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15. Reversibilidad

15.1 Objetivos

Joseph Liouville

Comenzamos este curso analizando un sistema de N

partículas en coordenadas generalizadas. Vimos que

cuando las interacciones se restringen a fuerzas que se

pueden derivar de un potencial, eventualmente depen-

diente del tiempo y de las velocidades, el movimiento del

sistema se describe con las ecuaciones de Lagrange.

Vimos más adelante que las coordenadas generalizadas

nos dejan introducir fácilmente vínculos entre las partí-

culas, permitiéndonos entonces describir sistemas más

generales, tales como los cuerpos rígidos.

Al estudiar las ecuaciones de Lagrange, encontramos

que se pueden obtener a partir del principio de acción

estacionaria. Pudimos usar este principio para generalizar los sistemas a los que podemos aplicar

las leyes de la mecánica. Sin embargo, algunas de estas generalizaciones dieron lugar a sistemas

físicamente poco realistas (sistemas en derivadas mayores, sistemas no locales), mientras que

otras funcionaron correctamente para describir sistemas reales (sistemas continuos).

Estamos entonces en el punto en el que resulta natural preguntarnos ¿cuál es la característica

definitoria de un sistema mecánico, que nos permitirá formular modelos completamente generales

capaces de describir cualquier sistema físico? En esta clase nos concentraremos en responderla,

analizando primero los sistemas más sencillos posibles, que son aquéllos cuya evolución es

discreta, y luego avanzando hacia sistemas más realistas con evolución continua.
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15.2 Sistemas con configuraciones discretas

Para preguntarnos acerca de las características generales de las leyes de evolución, comenzare-

mos en esta sección analizando los sistemas más simples posibles, es decir aquéllos que tienen

un conjunto contable de configuraciones discretas.

15.2.1 Leyes de evolución

Un sistema físico cualquiera tiene un conjunto de configuraciones posibles que podemos observar.

Supongamos que ponemos una etiqueta {a,b,c, . . .} a cada una de ellas, podemos definir su

espacio de configuración C como el conjunto de todas las etiquetas posibles

a b c . . .

Queremos hablar de la evolución temporal, porque después de todo de eso se trata la Mecánica. Es

decir, queremos ver cómo cambia el sistema de una configuración a otra a medida que transcurre

el tiempo.

Sin pretender plantearnos una pregunta filosóficamente tan complicada como ¿qué es el tiempo?,

lo mínimo que necesitamos es saber cómo medirlo. Para esto requerimos un reloj, que es un

sistema físico cuyas configuraciones están ordenadas de alguna manera. Por ejemplo, en un reloj

digital las diferentes configuraciones son los valores numéricos que se ven en la pantalla, y su

orden está dado por el orden natural de esos números.

15:01 15:02 15:03 …

En un reloj analógico, el orden estará dado por las sucesivas posiciones de las agujas. Lo importante

para esta discusión es que cualquier sistema cuyas configuraciones estén ordenadas puede cumplir

el rol de un reloj.

Estudiar entonces la evolución temporal de nuestro sistema, es establecer la correlación entre las

configuraciones del sistema y las configuraciones del reloj. Podemos resumirla en un cuadro
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Configuración del reloj Configuración del sistema

15:01 c

15:02 a

...
...

Este cuadro puede leerse como “cuando el reloj marca 15:01 el sistema está en la configuración c,

cuando el reloj marca 15:02 el sistema está en la configuración a, …”.

Sin embargo, es fácil notar que este cuadro contiene información redundante: la columna de la

izquierda contiene las configuraciones del reloj ordenadas de acuerdo a su orden natural. Es decir

que no necesitamos escribirla, basta con saber cuál es el orden de las configuraciones del sistema

para poder recuperar la correlación. Es decir que podemos representar la evolución temporal de la

siguiente manera

c a b . . .
∆t ∆t ∆t

Donde cada globo representa la configuración del sistema cuando el reloj está en cada una de sus

configuraciones ordenadas, y la flecha resume la evolución de una configuración a la siguiente. El

símbolo ∆t nos dice que durante esa evolución el reloj “hizo un tic” avanzando a su configuración

vecina.

Esta evolución temporal, que para cada configuración del reloj nos da la configuración del sistema,

se denomina trayectoria y se puede expresar formalmente como una función

Configuración del sistema = f (Configuración del reloj)

Con estas definiciones, estamos en condiciones de ponernos a discutir los elementos básicos de

un sistema mecánico.

Podemos comenzar preguntándonos ¿cuál es el sistema mecánico más sencillo que podemos

imaginar? La respuesta evidente es un sistema que sólo puede estar en una configuración. Un

buen ejemplo de eso es un clavo en una pared. Si etiquetamos las configuraciones posibles del

clavo con un nombre para cada una, tendremos solamente la configuración “clavo” definida como:

clavo = El clavo está clavado en la pared
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Supongamos que queremos estudiar la correlación entre las configuraciones de este sistema y las

del reloj ¿Cómo será la evolución resultante? Es decir ¿qué trayectorias se pueden presentar?

bueno, eso tiene una respuesta muy sencilla:

clavo clavo clavo ?
∆t ∆t ∆t

Es fácil determinar qué encontraremos en el lugar de “?” en la siguiente observación, nada menos

que la configuración clavo. Por lo tanto, en este sistema sólo hay una regla de evolución posible,

que podemos resumir con el gráfico

clavo

∆t

Cada vez que el reloj hace un tic, el sistema pasa de la configuración clavo a la configuración

clavo. No parece ser un sistema muy divertido, si bien podemos identificar en él los elementos

fundamentales para generalizar la discusión.

Intentemos definir ahora un sistema un poco más variado, que tenga al menos dos configura-

ciones posibles. Por ejemplo una moneda sobre una mesa, para la cual podemos definir las

configuraciones

1. cara = La moneda tiene la cara hacia arriba

2. ceca = La moneda tiene la cara hacia abajo

Una regla evolución posible para este sistema es la más aburrida: que a medida que recorremos

las configuraciones del reloj, la moneda se quede como está. En ese caso, las trayectorias serán

cara cara cara ?
∆t ∆t ∆t

ceca ceca ceca ?
∆t ∆t ∆t

Entonces la regla de evolución será: si la moneda muestra la cara, en el siguiente instante mostrará

la cara, si no la muestra, en el siguiente instante tampoco lo hará. Esto se puede simbolizar según

Regla 1:

cara ceca∆t ∆t

Lo que de hecho sigue siendo una regla de evolución extremadamente sencilla.
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Sin embargo, con este sistema que tiene dos configuraciones, podemos imaginar reglas de

evolución más complicadas. Por ejemplo, la que viene dada por el siguiente gráfico

Regla 2:

cara
ceca

∆t

∆t

la cual implicaría trayectorias de este tipo

cara ceca cara ?
∆t ∆t ∆t

ceca cara ceca ?
∆t ∆t ∆t

En otras palabras, la regla de evolución dice que: si la moneda muestra cara, pasa a ocultarla, y si

la oculta, pasa a mostrarla. Sigue siendo una regla simple, pero ya empezamos a ver un poco

más de estructura.

15.2.2 Reversibilidad y disipación

Hay otra regla de evolución posible para el sistema de la moneda sobre la mesa, a saber

Regla 3:

caraceca

∆t

∆t

O sea, si la moneda muestra la cara sigue mostrando la cara, si no la muestra pasa a mostrarla.

Esto resulta en las siguientes trayectorias posibles

cara cara cara ?
∆t ∆t ∆t

ceca cara cara ?
∆t ∆t ∆t

Y hay por supuesto una posibilidad complementaria, a saber

Regla 4:

caraceca
∆t

∆t
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que resulta en las trayectorias

ceca ceca ceca ?
∆t ∆t ∆t

cara ceca ceca ?
∆t ∆t ∆t

Sin embargo, estas dos últimas reglas de evolución tienen una característica fundamental que las

diferencia de las dos anteriores: si miramos la configuración de la moneda en un dado instante, no

podemos decir en qué configuración estaba en el instante anterior.

Por ejemplo, supongamos que nos concentramos en el último caso, la regla 4 dice que si la

moneda oculta la cara, queda como está, pero si la muestra, entonces en el siguiente instante la

ocultará. Pero entonces si observamos la moneda en la configuración ceca, no podemos afirmar

si en el instante anterior estaba en la configuración ceca o en la configuración cara.

En otras palabras, usando estas dos últimas reglas de evolución podemos predecir, pero no

podemos retrodecir, no es posible conocer la configuración anterior del sistema a partir del estado

presente. Es decir que se pierde información, aparece una flecha del tiempo que nos dice hacia

donde está el futuro y hacia dónde está el pasado.

Pasado
Futuro

tiempo

Este no es el tipo de evolución temporal que presenta la naturaleza a nivel microscópico. En todos

los sistemas que hemos estudiado la información se conserva, no hay una flecha del tiempo, y

es posible tanto predecir el estado futuro a partir del presente, como retrodecir la configuración

pasada que trajo al sistema hasta el presente.

Pasado
Futuro

tiempo

En otras palabras, de las posibles reglas de evolución que hemos propuesto para la moneda, sólo

las reglas 1 y 2 podrían corresponder a un sistema mecánico microscópico. Las reglas 3 y 4 son

los ejemplos más sencillos del fenómeno de disipación, en donde la información se pierde en la

evolución temporal. Este fenómeno sólo se observa en la naturaleza a nivel macroscópico.

Una cosa interesante para notar de las cuatro reglas arriba estudiadas, es que podrían formularse

en términos matemáticos como sigue. Definamos la variable q =±1 con q = 1 cuando la moneda

está en la configuración cara y q =−1 cuando la moneda está en la configuración ceca. En esta

notación t denota el estado del reloj, y denotaremos el estado siguiente como t +∆t. En ese caso
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las reglas de evolución toman la forma:

Regla 1: q(t+∆t) = q(t)

Regla 2: q(t+∆t) =−q(t)

Regla 3: q(t+∆t) = q(t)2

Regla 4: q(t+∆t) =−q(t)2

En cada caso, el valor de la variable en t +∆t es una función del valor de la variable en t.

q(t+∆t) = f (q(t))

En los casos 3 y 4 donde la evolución era disipativa, la función no es invertible. Estas últimas

observaciones implican que, si bien no es necesario, lo que hemos discutido en esta sección y lo

que veremos en las que siguen puede codificarse en fórmulas además de en diagramas.

Ejercicio:

Describa el sistema físico consistente en un dado cúbico. Identifique las configuraciones

posibles y enumere las posibles reglas de evolución ¿puede contar cuántas reglas

diferentes hay?

De entre todas las posibles reglas de evolución, imagine dos que sean retrodecibles,

es decir que permitan recorrer hacia atrás la evolución del dado para determinar el

estado inicial. Dibuje los correspondientes diagramas para las trayectorias posibles y

para la regla de evolución. Encuentre también dos que sean disipativos, o sea que no

permitan recuperar el estado inicial, y dibuje también los mencionados diagramas.

15.2.3 Configuraciones y estados

En este punto, uno podría preguntarse ¿no hay acaso mayor riqueza en el sistema que estamos

describiendo? No parece evidente que todas las reglas de evolución posibles se agoten en

las cuatro que acabamos de enumerar, cuando con casi ningún esfuerzo podemos imaginar

trayectorias más elaboradas.

Por ejemplo, uno podría imaginar la siguiente trayectoria

cara cara cara cara

ceca ceca ceca ?

∆t

∆t

∆t

∆t

∆t

∆t

∆t
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donde la regla sería: dos caras y luego dos cecas. También podríamos tener una trayectoria como

la que sigue

cara cara cara cara cara ?

ceca ceca

∆t

∆t

∆t

∆t

∆t

∆t ∆t

donde la regla es: dos caras y luego una ceca. O bien la que se obtiene a partir de la anterior

intercambiando las configuraciones

ceca ceca ceca ceca ceca ?

cara cara

∆t

∆t

∆t

∆t

∆t

∆t ∆t

Es decir: una cara y luego dos cecas. Hay varias otras reglas similares que podemos inventar.

¿Qué pasa con estas trayectorias? ¿Existen acaso reglas de evolución capaces de originarlas?

La cosa se aclara cuando intentamos escribir la regla de evolución más claramente. Tomemos por

ejemplo la primera, la regla de evolución “dos caras y luego dos cecas” puede escribirse como: si

la moneda muestra la cara, y en el instante anterior no lo hacía, entonces en el instante siguiente

seguirá mostrando la cara; en cambio si la moneda muestra la cara y en el instante anterior también

lo hacía, entonces en el instante siguiente no lo hará; y lo mismo pasa con la ceca. Es decir que

lo que va a pasar en el siguiente instante depende de lo que pasó en el instante previo y en el

anterior.

Esta observación nos lleva a concluir que para poder escribir un gráfico que describa esta regla de

evolución, tenemos que definir los estados del sistema de manera de contener toda la información

relevante

1. cara de cara = la moneda muestra cara y en el instante anterior también lo hacía

2. cara de ceca = la moneda muestra cara y en el instante anterior no lo hacía

3. ceca de cara = la moneda no muestra cara y en el instante anterior sí lo hacía

4. ceca de ceca = la no moneda muestra cara y en el instante anterior tampoco lo hacía

En ese caso la regla de evolución se puede representar en el siguiente gráfico
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Regla 5:

cara de cara

ceca de cara

ceca de ceca

cara de ceca

∆t

∆t

∆t

∆t

Con esta regla de evolución generamos la trayectoria de dos en dos antes mencionada.

Si quisieramos escribirla en términos de una ecuación, tendríamos que definir una variable para el

estado, que contenga la configuración presente y la anterior η(t) = (q(t −∆t),q(t)), donde t−∆t

representa la configuración del reloj que precede a la denotada por t. Con lo que la ecuación

quedaría

Regla 5: η(t+∆t) = f (η(t)) siendo f (q1,q2) = (q2,−q1)

Esta función es invertible, lo que coincide con la propiedad evidente de la trayectoria que escribimos

más arriba de poder recuperar cualquier estado pasado a partir del estado presente. Es decir que

esta regla no presenta disipación.

Ejercicio:

Imagine reglas no disipativas a partir de los estados que hemos definido para escribir la

Regla 5 ¿cuántas reglas no disipativas diferentes se pueden escribir? En otras palabras

¿cuántas funciones invertibles diferentes se pueden escribir de un conjunto de cuatro

elementos en sí mismo?

Para lograr una descripción similar de la trayectoria “dos caras y luego una ceca” se requiere en

cambio definir los estados de la siguiente manera

1. cara de cara = la moneda muestra cara y en el instante anterior también lo hacía

2. cara de ceca = la moneda muestra cara y en el instante anterior no lo hacía

3. ceca = la moneda no muestra cara
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Y entonces la regla de evolución se puede representar en el siguiente gráfico

Regla 6:

cara de cara

ceca

cara de ceca

∆t

∆t

∆t

con la cual generamos la correspondiente trayectoria muy fácilmente. La ecuación correspondiente

a esta regla se puede escribir en la forma

Regla 6: η(t+∆t) = f (η(t)) siendo f (q1,q2) = (q2,−q1q2)

Nuevamente se trata de una función invertible que permite volver hacia el pasado para recuperar

el estado de partida.

Ejercicio:

Encuentre los estados necesarios para definir la regla de evolución para la trayectoria

“una cara y luego dos cecas” en forma de un diagrama como el anterior.

Escriba también una función que permita codificar la mencionada regla correctamente

en una fórmula ¿Es una función invertible?

Lo que los dos ejemplos anteriores muestran es que hay una diferencia entre las configuraciones

posibles del sistema, que en el caso de la moneda serían solamente cara y ceca, y sus estados

posibles, que en el último caso de la regla 6 vendrían dados por cara de ceca, cara de cara y ceca,

y en el caso anterior de la regla 5 por cara de cara, cara de ceca, ceca de cara y ceca de ceca.

El estado del sistema se define como la cantidad mínima de información que necesitamos para

predecir la evolución temporal. Hicimos esto evidente en las ecuaciones de evolución, en las

cuales para predecir el siguiente instante fue necesario definir una variable η que contuviera q(t) y

q(t−∆t).

En general, este tipo de sistemas físicos discretos tienen un conjunto finito de configuraciones

distinguibles que definen su espacio de configuración C = {a,b,c,d . . .}. Las trayectorias son una

sucesión de configuraciones del tipo

a b b ?
∆t ∆t ∆t
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Las reglas de evolución se formulan haciendo referencia a sucesiones finitas de configuraciones

que forman lo que se denomina el espacio de estados del sistema E = {aaa,aab,ab,ac,abc, . . .}.

Tales reglas se pueden representar según

aaa

aab

ab

ac

abd

∆t

∆t

∆t ∆t

∆t

Estas reglas pueden ser disipativas si se pierde información a lo largo de la evolución, y en ese caso

no representan la evolución real de ningún sistema físico microscópico. Sin embargo, sabemos

que las reglas disipativas sí aparecen a nivel macroscópico, lo que se puede entender con el

siguiente ejemplo. Supongamos un espacio de configuración C = {a1,a2, . . . ,aN ,b} y supongamos

la regla de evolución

b

a1 a2 a3 ...

aN

∆t
∆t ∆t ∆t

∆t

∆t

Esta regla de evolución no presenta flecha del tiempo y es perfectamente aceptable a nivel micros-

cópico. Supongamos que las configuraciones a1,a2, . . .aN son indistinguibles a nivel macroscópico,

llamémoslas a todas a. Entonces veríamos para tiempos cortos, la siguiente regla efectiva de

evolución

b a
∆t

∆t

Por supuesto, si esperamos un tiempo lo bastante largo, conocido como tiempo de recurrencia

de Poincaré, el sistema finalmente llegará a la flecha larga del diagrama anterior, y volverá a su

estado inicial b, con lo que veríamos que la dinámica no es realmente disipativa.
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η1(t)

η2 (t)

n2(t)

n1(t ) η1(t+Δt )

η2 (t+Δt )
Δn1( t )

Δl

Figura 15.2.1: Discretización de un sistema con configuraciones continuas. El espacio se cuadricula en

hipercubos de lado ∆l y la evolución temporal se caracteriza en términos de un ∆n(t) que

parametriza el salto a un hipercubo vecino.

15.3 Sistemas con configuraciones continuas

Ahora imaginemos que queremos aplicar lo que aprendimos en las secciones anteriores a un

sistema cuyas configuraciones son continuas, es decir que son puntos en un espacio de estados

E descripto por d variables reales {ηα}.

Podemos primero transformarlo en un sistema discreto, cuadriculando el espacio Rd en pequeños

hipercubos de lado ∆l situados en ηα = nα ∆l, donde nα con α ∈ {1, . . . ,d} son números enteros.

Con esto, podemos caracterizar la configuración del sistema diciendo en cuál cubo está en cada

instante, es decir reemplazando ηα por nα . Así, hemos construido un sistema discreto del tipo

estudiado anteriormente, y la regla de evolución puede entonces escribirse según

nα(t+∆t) = fα(nβ (t))

Si hacemos que ∆t sea lo suficientemente pequeño, es natural imaginar que el sistema solo pudo

moverse a cubos cercanos. En otras palabras, podemos escribir

nα(t+∆t) = nα(t)+∆nα(nβ (t))

Donde la variable ∆nα(nβ ) en cada sitio vale cero para todas las direcciones α excepto una, para

la cual vale uno, indicando hacia dónde saltó el sistema. Esto se puede reescribir como

∆l nα(t +∆t)−∆l nα(t)
∆t

= ∆nα(nβ (t))
∆l
∆t

Ahora si hacemos a la vez que ∆t sea muy pequeño y refinamos nuestra rejilla ∆l, tenemos que

ηα ≈ nα ∆l y uα ≈ ∆nα ∆l/∆t y obtenemos

η̇α(t) = uα(ηβ (t))

donde uα es algún vector en Rd que es función de ηα . Es decir que una descripción de la regla de

evolución de nuestro sistema viene dada por un sistema autónomo de ecuaciones diferenciales

ordinarias de primer orden en el tiempo.
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Figura 15.3.1: Evolución en el espacio discretizado. Si la evolución es disipativa (izquierda) a un dado

hipercubo del espacio de estados se puede llegar desde dos hipercubos diferentes. Caso

contrario la evolución no es disipativa (derecha)

Un punto importante a resaltar es que supusimos que la configuración ηα determina el estado

del sistema. Si el estado y la configuración fueran diferentes, necesitaríamos escribir sistemas

ecuaciones de orden mayor.

Sin embargo, si queremos describir sistemas realistas a nivel microscópico, necesitamos que

las ecuaciones resultantes no determinen una flecha del tiempo, es decir que el sistema no sea

disipativo. Para asegurarnos que se cumpla esto, volvamos por un segundo a nuestra rejilla: si el

sistema está en el cubo caracterizado por los índices nα , es necesario estar seguros de que no

pudo haber llegado allí desde dos cubos diferentes n1
α y n2

α . En otras palabras, el contenido de

los cubos n1
α y n2

α no puede haber fluido con la evolución temporal dentro del mismo cubo nα . El

sistema no puede comprimirse, debe preservar el volumen del espacio de estados ¿Puede una

ecuación diferencial hacer esto? Veamos eso en algunos ejemplos

Ejemplo: caso unidimensional

Supongamos que ηα tiene una sola componente η , es decir que el espacio de estados

es unidimensional. En ese caso, la evolución temporal vendrá dada por la ecuación

η̇ = u(η)

Definamos ahora una pequeña región del espacio de estados, limitada por η y η+δη

¿adonde se mapeará esa región después de un tiempo infinitesimal dt? Tenemos que

η(t +dt) = η(t)+u(η(t))dt

(η+δη)(t+dt) = (η +δη)(t)+u(η+δη)dt

restando tenemos

δη(t+dt) = δη(t)+(u(η+δη)−u(η))dt
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Por lo tanto la longitud dη de un pequeño intervalo en el espacio de estados nece-

sariamente cambia salvo que u(η) sea constante. Es decir que, excepto el sistema

trivial dado por u constante, cuya trayectoria es η = u(t−t0)+η0, no existen sistemas

mecánicos no disipativos cuyo espacio de estados tenga una sola dimensión.

Este resultado podría inducir a confusión ¿qué sucede por ejemplo con una partícula

que se mueve en una dimensión? ¿No es acaso un sistema no disipativo bien definido?

Por supuesto que sí, pero el punto crucial es que si bien este sistema tiene un espacio

de configuración C que es unidimensional, su espacio de estados E es bidimensional.

Ejemplo: caso bidimensional

Vamos ahora al caso de un espacio de estados bidimensional. Tendremos que ηα =

(η1,η2) ∈ R2 y entonces la evolución temporal estará dada por

η̇α = uα(ηβ )

para un cambio temporal dt tendremos que

ηα(t+dt) = ηα(t)+uα(ηβ (t))dt

o en otras palabras

η1(t+dt) = η1(t)+u1(ηβ (t))dt η2(t+dt) = η2(t)+u2(ηβ (t))dt

Esto puede considerarse como un cambio de coordenadas en el espacio de confi-

guración, que antes describíamos con coordenadas ηα(t) y ahora con coordenadas

ηα(t+dt). Entonces el área cambiará con el jacobiano, según

δA(t+dt) = Det

(
∂ηα(t+dt)

∂ηβ (t)

)
δA(t)

Esto que se puede escribir como

δA(t+dt) = Det

(
δαβ +

∂uα

∂ηβ

∣∣∣∣
t
dt

)
δA(t)≈

(
1+

∂uα

∂ηα

∣∣∣∣
t
dt
)

δA(t)

Donde en la segunda igualdad usamos al relación Det(I +M) = 1+TrM+O(M)2 para

una matriz infinitesimal M. Es decir que para que el área no cambie, necesitamos que

se anule la divergencia del vector uα

∂uα

∂ηα

∣∣∣∣
t
= 0

Sabemos de los cursos de Análisis que esto pasa cuando existe alguna función H(ηα)

tal que el vector uα se escribe como

uα = εαβ

∂H
∂ηβ

o en componentes

u1 =
∂H
∂η2

u2 =− ∂H
∂η1
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Si tomamos las derivadas de esta expresión, tenemos que

∂u1

∂η1
=

∂ 2H
∂η1∂η2

∂u2

∂η2
=− ∂ 2H

∂η2∂η1

de donde inmediatamente vemos que, en efecto, la divergencia se anula

∂u1

∂η1
+

∂u2

∂η2
= 0

Esto conduce a las ecuaciones de movimiento

η̇1 =
∂H
∂η2

η̇2 =− ∂H
∂η1

que no son sino ecuaciones de Hamilton del tipo que estudiamos en la clase 10, si

hacemos las identificaciones η1 = q y η2 = p.

En conclusión, un sistema mecánico bidimensional con reglas de evolución no disipati-

vas, debe necesariamente cumplir las ecuaciones de Hamilton con algún hamiltoniano

H. Por supuesto, podríamos ahora hacer una transformación de Legendre para eliminar

los impulsos canónicos en favor de las velocidades generalizadas, y obtendríamos una

descripción lagrangiana del sistema en términos de ecuaciones de Lagrange.

Nótese que se trata de un resultado de enorme generalidad. Hemos arribado a él sin

hacer ningún tipo de suposición previa sobre la dinámica. Es decir, no asumimos que

se trata de un sistema formado por partículas, ni que satisface vínculos de un tipo u

otro, etc. Sólo impusimos la condición de que el sistema evolucione en el tiempo de

manera no disipativa, es decir sin perder información.

Ejemplo: flujo hamiltoniano bidimensional

En el caso bidimensional, los sistemas no disipativos tienen una ventaja adicional que

permite describir su movimiento con facilidad. Para identificarla, calculamos el producto

escalar del vector de flujo (η̇1, η̇2), que nos dice hacia donde se mueve el sistema en

cada punto del espacio de estados, con el gradiente del hamiltoniano

η̇1
∂H
∂η1

+ η̇2
∂H
∂η2

=
∂H
∂η2

∂H
∂η1

− ∂H
∂η1

∂H
∂η2

= 0

donde en la primera igualdad utilizamos las ecuaciones de Hamilton. Este resultado

implica que el flujo es perpendicular al gradiente del Hamiltoniano, es decir que apunta

a lo largo de sus curvas de nivel.

En otras palabras, la evolución temporal se produce siguiendo las curvas de nivel del

hamiltoniano. Es decir que para tener una descripción de sus trayectorias basta con

dibujar dichas curvas de nivel.
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Ejercicio:

Obtenga el hamiltoniano de un péndulo a partir de la transformación de Legendre

de su lagrangiano, y dibuje sus curvas de nivel con algún software de ploteo como

Mathematica, Maple o Geogebra.

Analice cada una de estas curvas como una posible evolución temporal del sistema

¿qué significan las curvas cerradas? ¿qué significan las curvas abiertas?

Ejercicio:

A partir del sistema unidimensional equivalente que encontramos para describir la

nutación de un trompo en la sección 9.2.3, encuentre el hamiltoniano correspondiente

a través de la transformación de Legendre.

Dibuje sus curvas de nivel y analice el movimiento resultante ¿puede identificar qué

curvas corresponden a una precesión cuasiperiódica y cuáles a una precesión alterna-

da?

Podemos probar que el resultado que acabamos de obtener para el caso bidimensional se replica

de manera similar para todos los sistemas mecánicos no disipativos con un espacio de estados de

dimensión par. En efecto, si tenemos 2D variables ηα con ecuación de movimiento

η̇α = uα(ηβ )

podemos escribir la evolución para un tiempo infinitesimal en la forma

ηα(t+dt) = ηα(t)+uα(ηβ (t))dt

Si tomamos esta expresión como un cambio de variables en el espacio de estados, el cambio en

el volumen se podrá escribir como

dV (t+dt) = Det

(
∂ηα(t+dt)

∂ηβ (t)

)
dV (t) = Det

(
δαβ +

∂uα

∂ηβ

∣∣∣∣
t
∆t

)
dV (t)≈

(
1+

∂uα

∂ηα

∣∣∣∣
t
∆t
)

dV (t)

donde hemos repetido los pasos del caso bidimensional. Por lo tanto, que se preserve el volumen

en el espacio de estados implica que debe anularse la divergencia

∂uα

∂ηα

∣∣∣∣
t
dt = 0

Es fácil ver que esto siempre se puede satisfacer eligiendo una función H tal que

uα = Jαβ

∂H
∂ηβ

donde Jαβ es una matriz o métrica simpléctica que cumple J2i−1,2i = −J2i,2i−1 = 1 y Jαβ = 0 en

cualquier otro caso. En otras palabras

J =



0 1 0 0 . . .

−1 0 0 0 . . .

0 0 0 1 . . .

0 0 −1 0 . . .
...

...
...

...
. . .


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O sea que la forma de más arriba para uα implica

u2i−1 =
∂H
∂η2i

u2i =− ∂H
∂η2i−1

Para i ∈ {1, . . . ,D}. Por lo tanto las ecuaciones de movimiento se separan en pares según

η̇2i−1 =
∂H
∂η2i

η̇2i =− ∂H
∂η2i−1

Estas también son ecuaciones de Hamilton, ahora para un sistema en dimensión par arbitraria, si

hacemos las identificaciones qi = η2i−1 y pi = η2i.

Una vez más, hemos llegado a un sistema descripto en términos de ecuaciones de Hamilton a

partir del sólo requerimiento de que su evolución sea no disipativa en el sentido de que no se

pierda información. De nuevo, podríamos a continuación practicar una transformación de Legendre

para describir el sistema en términos de ecuaciones de Lagrange.

Un punto importante a atender es que en estos ejemplos de dimensión par el lagrangiano resultante

es indepentiente del tiempo. Sin embargo, hemos usado las ecuaciones de Lagrange para sistemas

con fuerzas monogénicas, cuyo lagrangiano depende del tiempo. En esta instancia tendríamos

que preguntarnos ¿serán esos sistemas no disipativos? Veremos la respuesta en el ejemplo que

sigue.

Ejemplo: caso tridimensional

En el caso de que el espacio de estados es tridimensional, escribamos

η̇α = uα(ηβ )

o, en coordenadas

η̇1 = u1(ηα) η̇2 = u2(ηα) η̇3 = u3(ηα)

Primero hacemos una transformación hodográfica para eliminar el tiempo en favor de

la coordenada η3. En otras palabras, estamos cambiando la variable independiente

para escribir las ecuaciones en términos de un nuevo tiempo η3. Obtenemos

η1
′ =

u1(ηα)

u3(ηα)
≡ v1 η2

′ =
u2(ηα)

u3(ηα)
≡ v2 η3

′ = 1 ≡ v3

Donde ′ significa derivada con respeto a η3. Este sistema es completamente equivalente

al anterior, sólo que hemos cambiado de reloj. Podemos entonces escribir

η
′
α = vα(ηβ )

Con esto, los cálculos son iguales a los casos de las secciones anteriores, hasta el

punto en el que escribimos la divergencia del vector, que en este caso será vα

∂vα

∂ηα

∣∣∣∣
t
= 0
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En tres dimensiones, que la divergencia de un vector se anule implica que el vector

debe ser el rotor de otro vector hα , como sigue

vα = εαβγ

∂hγ

∂ηβ

o en componentes

v1 =
∂h3

∂η2
− ∂h2

∂η3
v2 =

∂h1

∂η3
− ∂h3

∂η1
v3 =

∂h2

∂η1
− ∂h1

∂η2
= 1

Las ecuaciones de movimiento entonces quedan

η
′
1 =

∂h3

∂η2
− ∂h2

∂η3
η
′
2 =− ∂h1

∂η3
+

∂h3

∂η1
η
′
3 = 1

Nótese que el vector hα está definido a menos de un gradiente, por lo que siempre

podemos hacer hα = h′α +∂α g con una función g(ηα) arbitraria, y las ecuaciones tomarán

la misma forma. Esto se puede usar para obtener un h′α que cumpla

∂h′2
∂η1

= 0
∂h′3
∂η1

= 0

Lo que al reemplazar en las ecuaciones implica

η
′
1 =

∂h′3
∂η3

η
′
2 =−

∂h′3
∂η2

η
′
3 = 1

Es decir que, si identificamos h′3 con el hamiltoniano H, las variables q = η1 y p = η2 y

el tiempo t = η3, hemos llegado a un sistema de ecuaciones de Hamilton en términos

de un hamiltoniano que depende del tiempo.

En conclusión, un sistema tridimensional no disipativo resulta en un sistema mecánico

bidimensional cuyo hamiltoniano depende del tiempo. Ahora podríamos transformar

Legendre para obtener un lagrangiano, que será del tipo de los que obtuvimos para las

fuerzas monogénicas.

Ejercicio: sistemas generales en dimensión impar

Es fácil generalizar lo anterior a sistemas cuyo espacio de estados tiene dimensión

impar arbitraria, seleccionando una de las coordeandas como el nuevo tiempo, y

obteniendo un sistema mecánico no autónomo con un espacio de configuración de

dimensión mitad. Las ecuaciones de Hamilton serán

η̇2i−1 =
∂H
∂η2i

η̇2i =− ∂H
∂η2i−1

Con i ∈ {1, . . . ,D}. Dado que la dimensión es ahora impar, en estas ecuaciones queda

excluida la última variable de la lista ηd , que cumple el rol del tiempo. Complete el

cálculo correspondiente.
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En conclusión, hemos probado que los sistemas no disipativos están descriptos por ecuaciones

de primer orden que toman la forma de ecuaciones de Hamilton. Las variables que describen

la configuración del sistema corresponden a las variables canónicas del sistema hamiltoniano

{ηα} = {(pi,qi)}. Si la dimensión del espacio de estados es impar, una de las variables queda

fuera de redefinición anterior y cumple el rol del tiempo. El sistema se puede transformar en un

sistema de ecuaciones de Lagrange a través de una transformación de Legendre.

Este resultado, que históricamente fuera probado en la dirección inversa, se conoce como teorema

de Liouville.

15.4 Resumen

Analizando sistemas discretos, hemos definido las nociones de reloj, espacio de configuraciones,

trayectoria, leyes de evolución, y espacio de estados. Hemos concluido que la característica defini-

toria de un sistema mecánico general es la de ser no disipativo, es decir la de no perder información

en la evolución temporal. Esto permite no solo la predicción, sino también la retrodicción.

Aplicando esta idea a los sistemas cuyo espacio de configuración es continuo, hemos descubierto

que la evolución temporal está descripta por ecuaciones de primer orden con la forma de Hamilton.

Hemos también demostrado que estas ecuaciones se pueden transformar en ecuaciones de

Lagrange donde el lagrangiano depende de las coordenadas, las velocidades y el tiempo.

Esto revierte de una enorme generalidad a las leyes de la Mecánica que venimos aprendiendo a lo

largo del presente curso, extendiendo su rango de validez más allá de los sistemas de partículas

con vínculos con los que empezamos, para hacerlas aplicables a cualquier sistema no disipativo.





16. Paréntesis de Poisson

16.1 Objetivos

Siméon Denis Poisson

Aprendimos en la clase anterior que cualquier sistema

no disipativo, es decir que evoluciona en el tiempo sin

perder información, tiene una descripción en términos de

ecuaciones de Hamilton.

En un punto crucial en la demostración de este resultado,

las variables que parametrizan el espacio de estados se

identifican como variables canónicas, separándose en

dos subconjuntos diferentes que representan respectiva-

mente las coordenadas y los impulsos.

En esta clase, vamos reparametrizar el espacio de es-

tados utilizando variables arbitrarias no necesariamente

canónicas, es decir que no distinguen entre coordena-

das e impulsos. En el camino, definiremos un concepto

extremadamente útil: el de los paréntesis de Poisson.

16.2 Paréntesis de Poisson

El espacio de estados E de sistema mecánico puede describirse en términos de un conjunto de 2D

variables canónicas {(pi,qi)}. Como vimos en las clases previas, sus ecuaciones de movimiento

pueden obtenerse a partir de un hamiltoniano H(pi,qi, t)

q̇i =
∂H
∂ pi

ṗi =−∂H
∂qi
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Estas ecuaciones permiten calcular la derivada temporal de una función arbitraria F definida sobre

el espacio de estados. Para hacer esto la escribimos como función de las variables canónicas en

la forma F(qi, pi, t), y luego usamos la regla de la cadena

dF
dt

=
∂F
∂ t

+
∂F
∂qi

q̇i +
∂F
∂ pi

ṗi

En esta expresión podemos reemplazar las derivadas temporales de las variables canónicas

{(q̇i, ṗi)} haciendo uso de las ecuaciones de Hamilton que escribimos más arriba. Esto da como

resultado

dF
dt

=
∂F
∂ t

+
∂F
∂qi

∂H
∂ pi

− ∂F
∂ pi

∂H
∂qi

=
∂F
∂ t

+{F,H}

En la segunda igualdad hemos definido la operación {F,H} entre nuestra función F sobre el

espacio de estados y el hamiltoniano H. Ésta se denomina paréntesis de Poisson y su definición

se puede extender para un par de funciones cualesquiera sobre el espacio de estados F y G según

{F,G}= ∂F
∂qi

∂G
∂ pi

− ∂F
∂ pi

∂G
∂qi

Como veremos en lo que sigue, la distinción de las variables canónicas entre coordenadas

y momentos está codificada en los paréntesis de Poisson. Una descripción del movimiento en

términos de paréntesis de Poisson mantiene tal información, mientras a la vez permite parametrizar

el espacio de fases con variables arbitrarias no necesariamente canónicas.

Ejemplo: ecuaciones de Hamilton

Por consistencia, tendría que ser posible reobtener las ecuaciones de Hamilton usando

paréntesis de Poisson para calcular las derivadas temporales de las variables canónicas.

Para ver esto, escribimos

q̇ j = {q j,H} ṗ j = {p j,H}

y usamos la forma explícita de los paréntesis de Poisson, para deducir

q̇ j =
∂H
∂ pi

δi j︷︸︸︷
∂q j

∂qi
−

0︷︸︸︷
∂q j

∂ pi

∂H
∂qi

=
∂H
∂ p j

ṗ j =
∂H
∂ pi

∂ p j

∂qi︸︷︷︸
0

−
∂ p j

∂ pi︸︷︷︸
δi j

∂H
∂qi

=−∂H
∂qi

con lo que hemos recuperado las ecuaciones de Hamilton, como esperábamos.

Los paréntesis de Poisson entre las variables canónicas {(pi,qi)} resultan de especial interés para

la descripción de la dinámica. Los podemos calcular de manera muy simple usando la definición

de más arriba, según

{qi,q j}=
∂qi

∂qk

∂q j

∂ pk
−

∂q j

∂qk

∂qi

∂ pk
= 0 {pi, p j}=

∂ pi

∂qk

∂ p j

∂ pk
−

∂ p j

∂qk

∂ pi

∂ pk
= 0

{qi, p j}=
∂qi

∂qk

∂ p j

∂ pk
−

∂ p j

∂qk

∂qi

∂ pk
= δikδ jk = δi j
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Estos resultados se pueden escribir de forma resumida si utilizamos la notación que introdujimos

en la clase anterior para las variables canónicas {ηα}= {(qi, pi)} con α ∈ {1, . . . ,2D}. En ese caso,

las tres fórmulas previas se resumen en una sola línea, según

{ηα ,ηβ}= Jαβ

siendo J la métrica simpléctica ya definida. Como vemos, estos paréntesis de Poisson fundamen-

tales contienen la información sobre la manera en que las variables canónicas se separan en

coordenadas e impulsos.

Ejemplo: paréntesis de Poisson en términos de la métrica simpléctica

La matriz J también se puede usar para reescribir la definición del paréntesis de Poisson

entre dos funciones cualesquiera sobre el espacio de estados F y G. En efecto, es fácil

ver que de la combinación particular de derivadas corresponde a la expresión

{F,G}= ∂F
∂ηα

Jαβ

∂G
∂ηβ

=
∂F
∂ηα

{ηα ,ηβ}
∂G
∂ηβ

Aquí en la segunda igualdad hemos reemplazado Jαβ por los paréntesis de Poisson

fundamentales {ηα ,ηβ} entre las variables canónicas {ηα}.

Ejemplo: ecuaciones de Hamilton

En términos de los paréntesis de Poisson fundamentales {ηα ,ηβ}= Jαβ , las ecuaciones

de Hamilton pueden escribirse como

η̇α = Jαβ

∂H
∂ηβ

= {ηα ,ηβ}
∂H
∂ηβ

donde la primera igualdad contiene la expresión que vimos en la clase previa, y en la

segunda reemplazamos Jαβ por {ηα ,ηβ}.

Lo que los ejemplos anteriores evidencian es que, dado un conjunto de variables canónicas

{ηα}, podemos reescribir las ecuaciones de Hamilton y el paréntesis de Poisson de dos funciones

cualesquiera sin necesidad de identificar cuáles de las variables son coordenadas y cuáles impulsos.

Lo único que se requiere son paréntesis de Poisson fundamentales {ηα ,ηβ}. Como veremos, esta

propiedad se extiende a un conjunto arbitrario de variables.

Nos proponemos describir nuestro espacio de estados E en términos de un nuevo conjunto

de variables {ζα}, no necesariamente canónicas, definidas por medio del cambio de variables

ζα = ζα(ηβ , t). Dos funciones cualesquiera del espacio de estados F y G se pueden escribir

entonces como F(ζα , t) y G(ζβ , t). Si calculamos su paréntesis de Poisson

{F,G}= ∂G
∂ pi

∂F
∂qi

− ∂F
∂ pi

∂G
∂qi

podemos usar la regla de la cadena para escribirlo en la forma

{F,G}= ∂G
∂ζα

∂ζα

∂ pi

∂F
∂ζβ

∂ζβ

∂qi
− ∂F

∂ζα

∂ζα

∂ pi

∂G
∂ζβ

∂ζβ

∂qi
=

(
∂ζα

∂ pi

∂ζβ

∂qi
− ∂ζα

∂ pi

∂ζα

∂qi

)
∂G
∂ζβ

∂F
∂ζβ
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o en otras palabras

{F,G}= ∂F
∂ζα

{ζα ,ζβ}
∂G
∂ζβ

Es decir que el paréntesis de Poisson de F y G en las nuevas variables {ζα} queda escrito en

términos de los paréntesis de Poisson fundamentales {ζα ,ζβ} de las mismas. En el caso en que

las coordenadas son canónicas, tenemos que {ηα ,ηβ} = Jαβ y recuperamos la expresión del

ejemplo de más arriba.

La regla que hemos encontrado se puede aplicar para obtener las ecuaciones de movimiento en

términos de las nuevas variables {ζα}. En efecto, sabemos que la derivada temporal de cualquier

función del espacio de estados viene dada por su paréntesis de Poisson con el hamiltoniano,

según

ζ̇α = {ζα ,H}+ ∂ζα

∂ t
=

∂ζα

∂ζβ

{ζβ ,ζγ}
∂H
∂ζγ

+
∂ζα

∂ t
= δαβ{ζβ ,ζγ}

∂H
∂ζγ

+
∂ζα

∂ t

o en otras palabras

ζ̇α = {ζα ,ζβ}
∂H
∂ζβ

+
∂ζα

∂ t

Con lo que hemos logrado escribir las ecuaciones de Hamilton para un conjunto de variables no

necesariamente canónicas que describen el espacio de estados.

Lo que los cálculos que hemos desarrollado demuestran, es que podemos describir el espacio de

estados en términos de un conjunto de variables arbitrario, siempre que tengamos la información de

la derivada temporal parcial de cada variable ∂ζα/∂ t y de los paréntesis de Poisson fundamentales

{ζα ,ζβ}. Con estos elementos, podemos calcular el paréntesis de Poisson entre dos funciones

arbitrarias sobre el espacio de estados, y podemos describir el movimiento del sistema.

Ejemplo: oscilador armónico

Sea el hamiltoniano de un oscilador armónico unidimensional

H =
p2

2m
+

1
2

kq2

escrito en términos del par de variables canónicas (p,q). Definamos un nuevo par de

variables (ρ,α) en el espacio de estados, que no necesariamente es canónico, y que

está dado por

ρ =
p2

2m
+

1
2

kq2

α = arctan

(√
1

km
p
q

)
El paréntesis de Poisson fundamental entre estas nuevas variables se puede escribir

como

{ρ,α}= ∂ρ

∂q
∂α

∂ p
− ∂ρ

∂ p
∂α

∂q
=

√
k
m
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Es obvio entonces que no se trata de variables canónicas, ya que si lo fueran debería-

mos haber obtenido ±1. Es evidente también que {ρ,ρ}= {α,α}= 0 y {α,ρ}=−
√

k/m.

En términos de las nuevas coordenadas el hamiltoniano se escribe

H = ρ

Con esto, estamos en condiciones de escribir las ecuaciones de Hamilton para las

nuevas variables, en la forma

ρ̇ = {ρ,α}∂H
∂α

= 0 α̇ = {α,ρ}∂H
∂ρ

=−
√

k
m

Estas ecuaciones se pueden resolver muy fácilmente, según

ρ = ρ0

α = α0 −
√

k
m
(t − t0)

Con lo que hemos resuelto el problema.

Nótese que el cálculo de las ecuaciones de movimiento a partir del hamiltoniano no

requirió del conocimiento del cambio de variables, si asumimos conocido el paréntesis

de Poisson {ρ,α}. En otras palabras, dado el paréntesis de Poisson fundamental, el

hamiltoniano contiene la información dinámica del sistema sin necesidad de recurrir a

coordenadas canónicas.

El resultado de arriba se puede invertir para reobtener la solución en términos de las

coordenadas originales usando la transformación inversa

p =
√

2mρ cosα

q =

√
2ρ

k
sinα

con lo que recuperamos la solución para el oscilador armónico

p =
√

2mρ0 cos

(√
k
m
(t − t0)−α0

)

q =

√
2ρ0

k
sin

(√
k
m
(t − t0)−α0

)

16.2.1 Álgebra de observables

El estado de un sistema mecánico está completamente determinado por el valor de sus variables

canónicas. Esto significa que cualquier magnitud que se pueda medir sobre el sistema debe ser

una función de tales variables. En otras palabras, las diferentes funciones sobre el espacio de

estados representan a los distintos observables físicos del sistema.

La suma de dos funciones sobre el espacio de estados es una nueva función, y lo mismo sucede

con el producto de una función por un número real. Esto significa que el conjunto de observables
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tiene la estructura de un espacio vectorial. Más aún, el paréntesis de Poisson toma dos funciones

sobre el espacio de estados, y nos devuelve como resultado una tercera. Esto dota al conjunto de

observables con una estructura de álgebra.

La operación definida por el paréntesis de Poisson cumple con una serie de propiedades, entre

las cuales resultan especialmente importantes las que se enumeran a continuación:

Antisimetría: es evidente a partir de su definición que el paréntesis de Poisson no es una

operación conmutativa, sino que cumple la propiedad

{F,G}=−{G,F}

La prueba es trivial, a saber

{F,G}= ∂F
∂qi

∂G
∂ pi

− ∂F
∂ pi

∂G
∂qi

=−
(

∂G
∂qi

∂F
∂ pi

− ∂G
∂ pi

∂F
∂qi

)
=−{G,F}

Bilinealidad: dadas dos funciones del tiempo α,β , se puede probar muy fácilmente que

para cualquier conjunto de tres funciones F,G y H en el espacio de estados, se cumple la

propiedad

{F,α G+β H}= α {F,G}+β {F,H}

La prueba es nuevamente muy simple, escribiendo

{F,α G+β H}= ∂F
∂qi

∂ (α G+β H)

∂ pi
− ∂F

∂ pi

∂ (α G+β H)

∂qi

y usando el hecho de que ni α ni β dependen de las coordenadas {qi} y momentos {pi}

podemos reacomodar las derivadas en la forma

{F,α G+β H}= ∂F
∂qi

(
α

∂G
∂ pi

+β
∂ H
∂ pi

)
− ∂F

∂ pi

(
α

∂G
∂qi

+β
∂ H
∂qi

)
Lo que nos permite entonces obtener

{F,α G+β H}= α

(
∂F
∂qi

∂G
∂ pi

− ∂F
∂ pi

∂G
∂qi

)
+β

(
∂F
∂qi

∂ H
∂ pi

− ∂F
∂ pi

∂ H
∂qi

)
=

= α {F,G}+β {F,H}

La misma propiedad se puede demostrar en la primera componente, a saber

{α F +β G,H}= α {F,H}+β {G,H}

Regla de Leibniz: Si tenemos tres funciones F,G y H en el espacio de fases, se cumple que

{F,GH}= {F,G}H +G{F,H}

Lo que implica que la operación {F, ·} actúa como una derivada en las funciones del espacio

de estados. Para probar esta regla, escribimos la forma explícita de la expresión de arriba

{F,GH}= ∂F
∂qi

∂ (GH)

∂ pi
− ∂F

∂ pi

∂ (GH)

∂qi
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Expandiendo el producto de derivadas, reescribimos

{F,GH}=
(

∂F
∂qi

∂G
∂ pi

− ∂F
∂ pi

∂G
∂qi

)
H +G

(
∂F
∂qi

∂H
∂ pi

− ∂F
∂ pi

∂H
∂qi

)
= {F,G}H +G{F,H}

con lo que hemos demostrado la propiedad.

Identidad de Jacobi: dadas tres funciones cualesquiera en el espacio de estados F,G y H, el

paréntesis de Poisson verifica

{F,{G,H}}+{G,{H,F}}+{H,{F,G}}= 0

Esto significa que no se trata de una operación asociativa.

Ejercicio:

Pruebe la identidad de Jacobi. Se trata de una demostración un poco más larga que

las anteriores, ya que involucra derivadas segundas. Escribiremos aquí los primeros

pasos, comenzando con

{F,{G,H}}= ∂F
∂qi

∂{G,H}
∂ pi

− ∂F
∂ pi

∂{G,H}
∂qi

o más explícitamente

{F,{G,H}}= ∂F
∂qi

∂

∂ pi

(
∂G
∂q j

∂H
∂ p j

− ∂G
∂ p j

∂H
∂q j

)
− ∂F

∂ pi

∂

∂qi

(
∂G
∂q j

∂H
∂ p j

− ∂G
∂ p j

∂H
∂q j

)
y actuando con las derivadas en las expresiones entre paréntesis, obtenemos ocho

términos con derivadas primeras y segundas. En estos términos hay que permutar F,G

y H para obtener los otros dos ordenamientos de la identidad de Jacobi. En la suma

resultante, cada expresión aparece dos veces con diferente signo y por lo tanto se

cancela.

Estas propiedades nos permiten abstraer la estructura del álgebra de observables de un sistema

mecánico. En efecto, podemos afirmar que dos observables cualesquiera se componen para dar

un tercer observable, cumpliendo con una ley que es antisimétrica, bilineal, y satisface la identidad

de Jacobi y la regla de Leibniz.

Esta caracterización de las propiedades de los observables nos permite generalizar las leyes

de la mecánica, para extenderlas incluso más allá de los sistemas no disipativos con espacio

de configuración continuo que vimos en el capítulo anterior. Podemos considerar otros sistemas

cuyos observables no sean funciones sobre un espacio de estados, sino algún otro tipo de objeto

que cumpla con un álgebra similar.

Ejemplo: mecánica de matrices

El conmutador de matrices, que toma dos matrices y nos devuelve una tercera de

acuerdo a la regla

[A,B] = A ·B−B ·A
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Es una aplicación del espacio de matrices en sí mismo que cumple propiedades

análogas a las del paréntesis de Poisson, a saber

Antisimetría: [A,B] =−[B,A]

Bilinealidad: [A,α B+β C] = α [A,B]+β [A,C], donde α y β ahora son números.

Identidad de Jacobi: [A, [B,C]]+ [B, [C,A]]+ [C, [A,B]] = 0

Regla de Leibniz: [A,B ·C] = [A,B] ·C+B · [A,C]

Esto nos permite definir una mecánica de matrices, en la que los observables son

matrices y existe una matriz hamiltoniana que describe la evolución temporal.

Ejemplo: mecánica de operadores

Un operador diferencial lineal L̂ que actúa sobre las funciones del espacio de configu-

ración se define según

L̂Ψ(qi) = ∑
o

ci1...io
∂ oΨ

∂qi1 . . .∂qio

donde la suma corre sobre los diferentes órdenes o de derivación, y los coeficientes

ci1...io son funciones de qi

El producto M̂ L̂ de operadores diferenciales lineales M̂ y L̂ es otro operador diferencial

lineal, cuya acción sobre una función del espacio de configuración Ψ(qi) se define

como la aplicación sucesiva (M̂ L̂)Ψ = M̂ (L̂Ψ). Con esto definimos

[L̂,M̂] = L̂ M̂− M̂ L̂

Este conmutador cumple propiedades análogas a las enumeradas más arriba para el

paréntesis de Poisson. Por lo tanto, podemos definir una mecánica de operadores en

la que los observables sean operadores lineales sobre un espacio de configuración,

uno de los cuales es un operador hamiltoniano que determina la evolución temporal.

Este ejemplo resulta particularmente interesante, ya que sabemos que en la Mecánica

Cuántica los observables se representan como operadores diferenciales lineales sobre

la función de onda del sistema, que es una función sobre el espacio de configuración.

En este sentido, la Mecánica Cuántica es una generalización de la Mecánica.

Ejemplo: cuantización canónica

El procedimiento de cuantización consiste en encontrar un sistema cuántico a partir de

su límite clásico. Por supuesto este proceso no es unívoco, ya que puede existir más

de un sistema cuántico con el mismo límite clásico.

Se trata de comenzar con un sistema clásico donde los observables son funciones

sobre el espacio de estados F, y transformarlo en un sistema cuántico donde son
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operadores diferenciales lineales F̂ que actúan sobre las funciones del espacio de

configuración.

La similitud de los paréntesis de Poisson con los conmutadores de operadores dife-

renciales en el espacio de configuración nos permite definir la regla de cuantización

canónica. Se trata de una aplicación de cuántización ̂ que transforma una función del

espacio de estados en un operador sobre funciones del mismo, y cumple que

[F̂ , Ĝ] = i} {̂F,G}

Es decir, el operador que corresponde al paréntesis de Poisson de dos observables,

está dado por el conmutador de los operadores que corresponden a cada uno de los

observables.

La regla propuesta se verifica en el caso particular de las coordenadas y los impulsos,

si definimos sus operadores asociados según

p̂i =
}
i

∂

∂qi
q̂i = qi

Para ver esto, hacemos actuar al conmutador de operadores sobre una función cual-

quiera Ψ(qi) del espacio de configuración

[q̂ j, p̂i]Ψ = q̂ j(p̂iΨ)− p̂i(q̂ jΨ) =
}
i

q j
∂

∂qi
Ψ− }

i
∂

∂qi
(q jΨ) = i}δi j Ψ

con lo que vemos que se cumple el requerimiento [q̂ j, p̂i] = i}{̂q j, pi}.

16.3 Resumen

En esta clase, definimos la operación matemática conocida como parentesis de Poisson y estudia-

mos sus propiedades y aplicaciones.

Aplicamos el paréntesis de Poisson para la descripción del movimiento en términos de un conjunto

de variables cualesquiera no necesariamente canónicas que parametrizan el espacio de estados.

Vimos que la información sobre la distinción entre coordenadas e impulsos se almacena en los

paréntesis de Poisson fundamentales los cuales, junto con la derivada temporal parcial de cada

coordenada, permiten escribir las ecuaciones de movimiento del sistema.

Aprendimos que el paréntesis de Poisson es una operación binaria, que dota al conjunto de los

observables del sistema de una estructura de álgebra. Esta idea nos permitió abstraer la noción

de sistema mecánico para poder generalizarla, incluyendo a los sistemas cuánticos. Vimos que el

paréntesis de Poisson resulta útil para encontrar la versión cuántica de un dado sistema clásico a

través de la regla de cuantización canónica.





17. Transformaciones canónicas

17.1 Objetivos

Henri Poincaré

En la clase previa estudiamos la posibilidad de repara-

metrizar el espacio de estados mediante un cambio de

variables completamente general. Encontramos la forma

de escribir las ecuaciones de movimiento de las nuevas

variables, que no necesariamente eran canónicas. Esto

requería el conocimiento de los paréntesis de Poisson

fundamentales entre las variables, y de sus derivadas

temporales parciales.

Sin embargo, entre todos los cambios de variables po-

sibles existe un subconjunto particular compuesto por

aquéllos que transforman variables canónicas en varia-

bles canónicas. Se trata de transformaciones que preser-

van los paréntesis de Poisson, y que resultan particularmente útiles para estudiar la evolución

temporal y las simetrías en el contexto de la formulación hamiltoniana.

En esta clase nos concentraremos en la obtención, las propiedades, y la aplicación de tales

cambios de variables.

17.2 Transformaciones canónicas

Un cambio de variables en el espacio de estados se denomina una transformación canónica,

cuando cumple que a partir de un conjunto de variables canónicas, es decir uno en el que se

pueden distinguir coordenadas de impulsos {(pi,qi)}, devuelve otro conjunto de variables que
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también son canónicas {(Pi,Qi)}.

Aprendimos antes que las variables canónicas tienen paréntesis de Poisson fundamentales dados

por las expresiones

{qi, p j}= δi j {qi,q j}= {pi, p j}= 0

Si las nuevas coordenadas también son canónicas, deben cumplir fórmulas similares

{Qi,Pj}= δi j {Qi,Q j}= {Pi,Pj}= 0

Dado el cambio de variables en la forma Pi = Pi(p j,q j, t) y Qi = Qi(p j,q j, t), la primera condición

puede escribirse explícitamente como

∂Qi

∂qk

∂Pj

∂ pk
− ∂Qi

∂ pk

∂Pj

∂qk
= δi j

Este es un conjunto de ecuaciones diferenciales para las funciones Pi(p j,q j, t) y Qi(p j,q j, t), que

podríamos intentar resolver para obtener la transformación canónica más general. Una manera de

hacerlo es invertir la relación Qi = Qi(p j,q j, t) para obtener pi = χi(Q j,q j, t), con lo que también

podemos escribir Pi = Pi(χ j(Qk,qk),q j, t) = ξi(Q j,q j, t). Es evidente que, dada la definición de la

función χi, se cumple la identidad

Qi(χ j(Qk,qk),q j, t) = Qi

que se puede derivar respecto de Q j a ambos lados para obtener

∂Qi

∂ pk

∂ χk

∂Q j
= δi j

Por otro lado, reemplazando la función ξi(Q j,q j) en el paréntesis de Poisson

∂Qi

∂qk

∂Pj

∂ pk
− ∂Qi

∂ pk

∂Pj

∂qk
=

∂Qi

∂qk

∂ξ j

∂ pk
− ∂Qi

∂ pk

∂ξ j

∂qk
=

∂Qi

∂qk

∂ξ j

∂Ql

∂Ql

∂ pk
− ∂Qi

∂ pk

(
∂ξ j

∂qk
+

∂ξ j

∂Ql

∂Ql

∂qk

)
lo que se puede reordenar

∂Qi

∂qk

∂Pj

∂ pk
− ∂Qi

∂ pk

∂Pj

∂qk
=

∂ξ j

∂Ql

(
∂Qi

∂qk

∂Ql

∂ pk
− ∂Qi

∂ pk

∂Ql

∂qk

)
− ∂Qi

∂ pk

∂ξ j

∂qk
=

∂ξ j

∂Ql
{Qi,Ql}−

∂Qi

∂ pk

∂ξ j

∂qk

Dado que queremos que las nuevas variables sean canónicas, se debe cumplir también que

{Qi,Ql}= 0. Imponiendo esa condición en la última ecuación, obtenemos

−∂Qi

∂ pk

∂ξ j

∂qk
= δi j

Pero más arriba habíamos expresado la delta de Kronecker δi j en términos de derivadas de

χi(Q j,q j), con lo que podemos establecer la igualdad

−∂Qi

∂ pk

∂ξ j

∂qk
=

∂Qi

∂ pk

∂ χk

∂Q j

o en otras palabras

−
∂ξ j

∂qk
=

∂ χk

∂Q j
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Esta ecuación se resuelve fácilmente en términos de una función F1(qi,Qi, t) en la forma

χk =
∂F1

∂qk
ξ j =− ∂F1

∂Q j

donde hemos asumido las condiciones de regularidad necesarias para que las derivadas conmuten,

de manera de resolver la ecuación. Con esto, para cada función F1(qi,Qi, t) podremos definir una

transformación canónica, según las ecuaciones

pi(q j,Q j, t) =
∂F1

∂qi
Pi(q j,Q j, t) =−∂F1

∂Qi

La forma explícita de la transformación Pi = Pi(p j,q j, t), Qi = Qi(p j,q j, t) se obtiene invirtiendo

estas ecuaciones. La función F1(qi,Qi, t) se conoce como función generatriz de la transformación

canónica.

Ejemplo: dualidad de Poincaré

Supongamos que tenemos la función generatriz más simple posible que depende de

las variables qi y Qi, dada por

F1 = qiQi

Si la usamos para escribir una transformación canónica según la fórmula de más arriba,

obtenemos

pi(q j,Q j, t) =
∂F1

∂qi
= Qi Pi(q j,Q j, t) =−∂F1

∂Qi
=−qi

Es decir, una transformación canónica que intercambia coordenadas con momentos.

Esto se conoce como dualidad de Poincaré.

El que hemos encontrado más arriba no es el único tipo de función generatriz que podemos

definir. En efecto, podemos hacer transformaciones de Legendre de F1 para obtener otros tipos de

funciones generatrices. Por ejemplo, dado

Pi(q j,Q j, t) =−∂F1

∂Qi

podemos invertir la ecuación para tener

Qi = γi(Pj,q j, t)

Y con esto hacer una transformación de Legendre según

F2(Pi,qi, t) = Pi γi(Pj,q j, t)+F1(γk(Pj,q j, t),qk, t)

Como aprendimos cuando estudiamos transformaciones de Legendre, se cumple que

∂F2

∂Pi
= Qi(Pi,qi, t)

∂F2

∂qi
= pi(Pi,qi, t)

Esto quiere decir que para cualquier función F2(Pi,qi, t) podemos definir una transformación canó-

nica invirtiendo las fórmulas de más arriba para obtener Pi = Pi(p j,q j, t), Qi = Qi(p j,q j, t).
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Ejemplo: transformación identidad

El caso más simple para las funciones generatrices de tipo F2(Pi,qi, t) está dado por

F2(Pi,qi, t) = qiPi

de la cual se deduce la ley de transformación

Qi(Pj,q j, t) =
∂F2

∂Pi
= qi pi(Pj,q j, t) =

∂F2

∂qi
= Pi

Es decir que se trata de la transformación identidad.

Ejemplo: cambios de coordenadas

Sabemos que la descripción lagrangiana nos permite usar coordenadas generalizadas

arbitrarias. Es natural entonces preguntarse si un cambio arbitrario de las coordenadas

es una transformación canónica. Para responder esto, escribimos la función generatriz

F2(Pi,qi, t) = si(q j, t)Pi

siendo hi(q j, t) un conjunto arbitrario de tantas funciones como coordenadas. Usando

las derivadas como se explicó más arriba, tenemos

Qi(Pj,q j, t) =
∂F2

∂Pi
= si(q j, t) pi(Pj,q j, t) =

∂F2

∂qi
=

∂ s j

∂qi
Pj

Con lo que hemos realizado un cambio arbitrario de coordenadas con una transforma-

ción canónica. Puede probarse también que el cambio en los impulsos es precisamente

el que corresponde en el formalismo lagrangiano, si recordamos la identidad que

probamos en los primeros capítulos ∂ s j/∂qi = ∂ ṡ j/∂ q̇i.

Por supuesto, tenemos la opción alternativa de hacer la transformación de Legendre respecto de

la otra variable. Es decir, usando que

pi(q j,Q j, t) =
∂F1

∂qi

e invirtiendo para obtener

qi = µi(Q j, p j, t)

Con esa función escribimos la transformación de Legendre según

F3(pi,Qi, t) = pi µi(Q j, p j, t)−F1(µk(Q j, p j, t),Qk, t)

Es evidente entonces a partir de las propiedades de las transformadas de Legendre que se cumple

que

∂F3

∂ pi
= qi(pi,Qi, t)

∂F3

∂Qi
= Pi(pi,Qi, t)

En otras palabras, para cualquier función F3(Pi,qi, t) podemos obtener una transformación canónica

invirtiendo las fórmulas de arriba.
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Ejercicio:

Dada la forma más simple de la función F3(Pi,qi, t)

F3(pi,Qi, t) = piQi

obtener la forma de la transformación canónica resultante, demostrando que se trata

nuevamente de la transformación identidad.

Tambien podemos hacer la transformación de Legendre de F1(qi,Qi, t) respecto de todas sus

variables, en la forma

F4(pi,Pi, t) = pi µ̃i(Pj, p j, t)−Pi γ̃i(Pj, p j, t)−F1(µ̃i(Pj, p j, t), γ̃i(Pj, p j, t), t)

donde las funciones qi = µ̃i(Pj, p j, t) y Qi = γ̃i(Pj, p j, t) se obtienen invirtiendo las derivadas de

F1(qi,Qi, t). Esto resulta en las siguientes relaciones

∂F4

∂ pi
= qi(pi,Qi, t)

∂F4

∂Pi
=−Qi(pi,Qi, t)

cuyas funciones inversas proveen la transformación canónica en su forma explícita.

Ejercicio:

Dado el ejemplo trivial para una función del tipo anterior

F4(pi,Pi, t) = piPi

obtener la correspondiente transformación canónica, demostrando que se reobtiene la

dualidad de Poincaré.

Con esto, estamos en condiciones de establecer las ecuaciones de movimiento para las variables

canónicas transformadas. Éstas se obtienen utilizando los paréntesis de Poisson, en la forma

Q̇i = {Qi,H}+ ∂Qi

∂ t
=

∂H
∂Pi

+
∂Qi

∂ t
Ṗi = {Pi,H}+ ∂Pi

∂ t
=− ∂H

∂Qi
+

∂Pi

∂ t

Extrañamente, estas expresiones no parecen tener la forma de ecuaciones de Hamilton, que es

lo que esperaríamos si las variables {(Pi,Qi)} fueran realmente canónicas. Para resolver esto,

comencemos suponiendo que la transformación canónica está generada por una función de tipo

F1, lo que implica

pi =
∂F1

∂qi
Pi =−∂F1

∂Qi

Por otro lado, también podríamos describirla en terminos de la transformada de Legendre F2, lo

que nos permite escribir

pi =
∂F2

∂qi
Qi =

∂F2

∂Pi
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De este par de ecuaciones y del anterior, extraemos la segunda ecuación para reescribir las

derivadas temporales en la forma

Q̇i =
∂H
∂Pi

+
∂ 2F2

∂ t ∂Pi
=

∂

∂Pi

(
H +

∂F2

∂ t

)
Ṗi =− ∂H

∂Qi
− ∂ 2F1

∂ t ∂Qi
=− ∂

∂Qi

(
H +

∂F1

∂ t

)
Ahora bien, si recordamos que F1(Qi,qi, t) y F2(Pi,qi, t) están relacionadas por una transformación

de Legendre, sabemos que debe cumplirse la identidad ∂F2/∂ t = ∂F1/∂ t, con lo que las derivadas

temporales de las nuevas variables canónicas pueden reescribirse como ecuaciones de Hamilton

Q̇i =
∂

∂Pi

(
H +

∂F1

∂ t

)
=

∂K
∂Pi

Ṗi =− ∂

∂Qi

(
H +

∂F1

∂ t

)
=− ∂K

∂Qi

En términos del nuevo hamiltoniano

K(Pi,Qi, t) = H (pi(Pi,Qi, t),qi(Pi,Qi, t), t)+
∂F1

∂ t

En otras palabras, la dependencia temporal de una transformación canónica se refleja en un

cambio en la forma del Hamiltoniano.

Con esto, hemos tenido éxito en construir cambios de variables que preservan el carácter canó-

nico de las mismas. Estas transformaciones mantienen la forma de los paréntesis de Poisson

fundamentales, y están definidas en términos de funciones generatrices de cuatro tipos posibles.

La evolución de las nuevas variables se describe en términos de ecuaciones de Hamilton.

17.2.1 Transformaciones canónicas infinitesimales

Supongamos ahora que tenemos una transformación canónica que es cercana a la identidad,

es decir que la diferencia entre las variables transformadas {(Pi,Qi)} y las originales {(pi,qi)}

es una magnitud muy pequeña. Es natural suponer que su función generatriz estará dada por

una pequeña deformación de aquélla que genera la transformación identidad. En otras palabras,

podemos escribir

F2(Pi,qi, t) = qiPi + ε g(Pi,qi, t)

donde ε es un parámetro infinitesimal, y la nueva funcion g(Pi,qi, t) se conoce como el generador

de la transformación. Bajo la acción de esta transformación, las variables canónicas se verán

modificadas en la forma

pi =
∂F2

∂qi
= Pi + ε

∂g
∂qi

Qi =
∂F2

∂Pi
= qi + ε

∂g
∂Pi

La segunda ecuación se puede reescribir usando la regla de la cadena según

Qi =
∂F2

∂Pi
= qi + ε

∂g
∂ p j

∂ p j

∂Pi

reemplazando ahora la forma explícita de p j en esta expresión, tenemos

Qi = qi + ε
∂g
∂ p j

(
δi j + ε

∂ 2g
∂q j∂Pi

)
= qi + ε

∂g
∂ p j

δi j +O(ε)2
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Volviendo a la regla de transformación de más arriba, vemos que al orden lineal en ε se puede

reemplazar por

Pi =
∂F2

∂qi
= pi − ε

∂g
∂qi

Qi =
∂F2

∂Pi
= qi + ε

∂g
∂ pi

Con lo que hemos escrito la regla de tranformación de las variables canónicas bajo una transfor-

mación canónica infinitesimal en términos de derivadas del generador g(Pi,qi, t).

Nos preguntamos ahora cómo cambia una función cualquiera sobre el espacio de estados F bajo

una transformación canónica. Para ver esto, escribimos

F(qi, pi, t) = F
(

Qi − ε
∂g
∂ pi

,Pi + ε
∂g
∂qi

, t
)

lo que se puede expandir al orden lineal en el parámetro infinitesimal ε en la forma

F(qi, pi, t) = F(Qi,Pi, t)− ε
∂F
∂q j

∂g
∂ pi

+ ε
∂F
∂ pi

∂g
∂qi

= F(Qi,Pi.t)+ ε {g,F}

o en otras palabras

F(Qi,Pi, t) = F(qi, pi, t)+ ε {F,g}

Esto implica que el cambio en cualquier función bajo una transformación canónica infinitesimal

estará dado por su paréntesis de Poisson con el correspondiente generador.

Generadores:

En el capítulo 14, escribimos un cambio de coordenadas generalizadas infinitesimal en

la forma

Qi = si(q j, t) = qi + ε gi(q j, t)

donde llamamos a las funciones gi(q j, t) los generadores de la transformación. En este

punto, quisiéramos saber qué relación tienen con el generador de la correspondiente

transformación canónica infinitesimal. De acuerdo a lo que discutimos más arriba para

escribir un cambio de coordenadas generalizadas en la forma de una transformación

canónica, tenemos que la función generatriz será

F2(Pi,qi, t) = si(q j, t)Pi = qiPi + ε pi gi(q j, t)

donde en la segunda igualdad reemplazamos si(qi, t) por su forma infinitesimal, y

expandimos a orden lineal en ε. Esto nos permite concluir que g(pi,qi, t) = pigi(qi, t).

La forma de la transformación infinitesimal de las variables canónicas en términos de derivadas

del correspondiente generador es reminiscente de las ecuaciones de Hamilton. Esto nos invita

a pensar si la evolución temporal será también una transformación canónica. Si escribimos el

cambio en las variables canónicas cuando transcurre un tiempo ε a primer orden, tenemos

Qi(t) = qi(t + ε) = qi(t)+ ε
∂H
∂ pi

Pi(t) = pi(t + ε) = pi(t)− ε
∂H
∂qi
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Con lo que verificamos que la evolución temporal tiene la forma de una transformación canónica

en la cual el rol del generador g(pi,qi, t) lo cumple el hamiltoniano H(pi,qi, t).

Lo anterior se puede interpretar también en el sentido opuesto: cualquier transformación canónica

que tenga una forma infintesimal se puede pensar como la evolución temporal con un hamiltoniano

dado por el correspondiente generador g. Una implicación inmediata es que, dado que la evolución

temporal preserva el volumen en el espacio de estados, lo mismo hace una transformación

canónica cualquiera. Para probar esto de manera directa, escribimos el diferencial de volumen en

el espacio de estados en la forma

∏
i

dQidPi = ∏
i

∣∣∣∣∂ (Q j,Pj)

∂ (qk, pk)

∣∣∣∣ dqi d pi = ∏
i

∣∣∣∣∣∣
δ jk + ε

∂ 2g
∂qi∂ pi

−ε
∂ 2g
∂q2

i

ε
∂ 2g
∂ p2

i
δ jk − ε

∂ 2g
∂qi∂ pi

∣∣∣∣∣∣ dqi d pi

Es fácil ver que a orden lineal en ε el determinante en la última expresión de la derecha es la

unidad, con lo que el volumen en el espacio de estados se conserva.

17.2.2 Versión hamiltoniana del teorema de Noether

Las transformaciones canónicas permiten rederivar el teorema de Noether de una manera extre-

madamente simple e iluminadora, y generalizarlo al caso de simetrías que mezclan coordenadas

e impulsos.

Supongamos que tenemos una transformación canónica cuyo generador C es una magnitud

conservada, es decir que cumple Ċ = 0. Podemos utilizar la regla que obtuvimos antes para

describir cómo cambiará el hamiltoniano del sistema bajo esta transformación

H(Pi,Qi, t) = H(pi,qi, t)+ ε {H,C}= H(pi,qi, t)− ε

(
Ċ− ∂C

∂ t

)
= K(Pi,Qi, t)

En la última igualdad reemplazamos Ċ = 0 y utilizamos la definición que dimos más arriba para el

hamiltoniano transformado K. Expandiendo a orden lineal en ε a ambos lados de esta igualdad,

obtenemos

K(pi,qi, t) = H(pi,qi, t)+O(ε)2

Concluimos que el hamiltoniano es invariante a orden ε frente a la transformación. Esto a su vez

resulta en las que las ecuaciones de Hamilton no cambian, lo que significa que la transformación

es una simetría. Con esto hemos probado que cada vez que haya una magnitud conservada, esta

actúa como el generador de una transformación canónica que es una simetría del sistema.

El resultado anterior también se puede leer a la inversa: dada una transformación canónica con

generador g, debe cumplirse la identidad

K(Pi,Qi, t) = H (pi,qi, t)+ ε
∂g
∂ t
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Aplicando al hamiltoniano K la regla de transformación que derivamos más arriba para cualquier

función sobre el espacio de estados, esta fórmula puede reescribirse como

K(pi,qi, t)+ ε{K,g}= H (pi,qi, t)+ ε
∂g
∂ t

Lo que puede reordenarse en la forma

K(pi,qi, t) = H (pi,qi, t)+ ε

(
∂g
∂ t

+{ f ,H}
)
+O(ε)2

= H (pi,qi, t)+ ε ġ+O(ε)2

Pero si el hamiltoniano es invariante K(pi,qi, t) = H(pi,qi, t), entonces la segunda línea implica

inmediatamente que ġ = 0, es decir que g es una magnitud conservada. Por lo tanto cada vez que

haya una simetría infinitesimal, habrá una magnitud conservada que es el generador de dicha

simetría.

Con lo de arriba, hemos entonces recuperado el teorema de Nonther de una manera bastante

sencilla en el formalismo hamiltoniano, usando paréntesis de Poisson.

Es importante señalar que las transformaciones que hemos incluido en la deducción pueden

mezclar arbitrariamente impulsos y coordenadas. Esto implica que lo que demostramos es en

realidad una generalización de la versión lagrangiana del teorema de Noether.

Ejemplo: rotaciones

Supongamos un sistema invariante rotacional, con hamiltoniano

H =
p2

a

2m
+V (r)

Este sistema conserva el momento angular

~̀=~r×~p

cuyas componentes se escriben `a = εabcxb pc. Esto implica que se cumple la regla para

los paréntesis de Poisson

{`a,H}= 0

Por otro lado, también deducimos de aquí que los `a generarán simetrías del sistema.

Para ver cuáles son estas simetrías, hacemos

x′a = xa + ε
∂`d

∂ pa
= xa + ε εdbcxbδac = xa + ε εdbaxb

p′a = pa − ε
∂`d

∂xa
= pa − ε εdbc pcδab = pa + ε εdca pc

lo que en términos vectoriales se escribe como

~r′ =~r+ ε~r× ňd ~p′ = ~p+ ε ~p× ňd

donde ňd es un vector unitario a lo largo del eje xd . En otras palabras, acabamos de

demostrar que las componentes del momento angular generan las rotaciones a lo largo

de cada uno de los ejes.
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Ejemplo: vector de Laplace-Runge-Lenz

En el problema de Kepler, existe un vector adicional que se conserva además del

momento angular. Este es el vector de Laplace-Runge-Lenz, definido como

~V = ~p×~̀− kµ ř = ~p× (~r×~p)− kµ ř = p2~r− (~p ·~r)~p− kµ ř

Donde µ es la masa reducida y k es la constante de acoplamiento del potencial de

Kepler. En componentes esto se lee

Va = pb(pbxa − paxb)− kµ
xa

r

Dado que se conserva, debe ser el generador de alguna simetría. Para ver cómo actúa

esta simetría sobre las variables canónicas, escribimos

x′a = xa + ε
∂Vd

∂ pa
= xa + ε(2paxd − pdxa − pbxbδad)

p′a = pa − ε
∂Vd

∂xa
= pa − ε

(
pb pbδad − pa pd −

kµ

r

(
δad −

xdxa

r2

))
Aquí se ve claramente que es una simetría que mezcla coordenadas e impulsos, algo

que nunca hubiéramos podido escribir en el formalismo lagrangiano.

Los paréntesis de Poisson proporcionan una ventaja adicional. Supongamos que conocemos dos

magnitudes conservadas C1 y C2. Estas magnitudes cumplen que

{C1,H}+ ∂C1

∂ t
= 0 {C2,H}+ ∂C2

∂ t
= 0

Entonces usando la identidad de Jacobi, tenemos que

{{C2,C1},H}+{{C1,H},C2}+{{H,C2},C1}= 0

donde podemos reemplazar las expresiones de arriba para deducir

{{C2,C1},H}+
{

∂C1

∂ t
,C2

}
−
{

∂C2

∂ t
,C1

}
= {{C2,C1},H}+ ∂

∂ t
{C2,C1}=

d
dt
{C2,C1}= 0

Esto implica que la nueva magnitud C3 = {C2,C1} también será conservada Ċ3 = 0. Esta operación

puede resultar en magnitudes conservadas nuevas, o a veces simplemente nos devuelve funciones

de las magnitudes que ya teníamos C3 = f (C1,C2).

El conjunto de todas las magnitudes conservadas {Cn} de un sistema físico es un subconjunto de

su álgebra de observables que estudiamos en la clase previa. La propiedad que acabamos de

probar implica que todas estas cantidades satisfacen la siguiente regla

{Cn,Cm}= fnm(Ck)

En otras palabras, el subconjunto de magnitudes conservadas forma en sí mismo un álgebra,

que es una subalgebra del álgebra de observables. Se denomina algebra de cargas o algebra de

simetrías, ya que con las {Cn} podremos generar todas las simetrías del sistema. Las funciones

fnm(Ck) se denominan las funciones de estructura del álgebra de simetrías. En el caso bastante

frecuente en el que tales funciones son lineales {Cn,Cm}= fmnkCk, las constantes fmnk se llaman

constantes de estructura del sistema.
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Ejercicio:

Volviendo a las componentes del momento angular, de las que aprendimos que son los

generadores de las rotaciones alrededor de cada eje, demuestre que se cumple que

{`a, `b}= εabc`c

Con lo que las constantes de estructura están dadas por el símbolo de Levi-Civita εabc.

La regla para el paréntesis de Poisson de `a es reminiscente de los generadores

matriciales ti que mencionamos en el capítulo sobre rotaciones. Estos satisfacen el

álgebra de conmutadores

[ta, tb] = εabctc

La cuantización canónica debe respetar la regla escrita más arriba, por lo que los

operadores de momento angular ˆ̀ deben cumplir

[ ˆ̀a, ˆ̀b] = }i{̂`a, `b}= }iεabc ˆ̀c

Es por esta razón que el spin de un electrón se representa con matrices de Pauli, de

modo de satisfacer esta regla de conmutación.

Ejercicio:

Usando las propiedades de los paréntesis de Poisson, pruebe que el vector de Laplace-

Runge-Lenz cumple con la siguiente álgebra

{Va,Vb}=−2µ H εabc`c

donde H es el hamiltoniano del problema de Kepler. Pruebe que se cumple además

que

{`a,Vb}= εabcVc

Lo que implica que ~V transforma como un vector frente a rotaciones.

17.3 Resumen

Estudiamos en esta clase las transformaciones canónicas, que están dadas por aquéllos cambios

de variables en el espacio de estados que preservan los paréntesis de Poisson fundamentales.

Aprendimos que hay cuatro tipos de funciones que definen transformaciones canónicas, que se

relacionan entre sí mediante transformaciones de Legendre.

Estudiamos también las transformaciones canónicas infinitesimales, y las usamos para demostrar

que la evolución temporal es de hecho una transformación canónica. Más aún, entendimos

que cualquier transformación canónica puede interpretarse como una evolución temporal con
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un hamiltoniano dado por el generador de la transformación, y dedujimos que debe entonces

preservar el volumen del espacio de estados.

Finalmente, generalizamos el teorema de Noether al caso hamiltoniano, incluyendo simetrías que

mezclan coordenadas e impulsos. Vimos que cada vez que una transformación canónica es una

simetría, su generador se conserva y recíprocamente, cada vez que hay una cantidad conservada,

esta genera una simetría.



18. Ecuación de Hamilton-Jacobi

18.1 Objetivos

Carl Gustav Jacob Jacobi

En esta clase, vamos a usar las transformaciones canó-

nicas que estudiamos la clase pasada para reformular

completamente la descripción del movimiento de un sis-

tema mecánico en el espacio de estados.

Hasta ahora hemos usado ecuaciones diferenciales or-

dinarias. En el formalismo lagrangiano, usabamos ecua-

ciones diferenciales de segundo orden, que nos decían

como evolucionaba el sistema en el espacio de configura-

ción. En el formalismo hamiltoniano en cambio, utilizamos

ecuaciones de primer orden para estudiar el movimiento

en el espacio de estados. En ambos casos, el número

de ecuaciones era igual al número de variables.

En esta clase, vamos a construir una ecuación diferencial en derivadas parciales para una sola

magnitud, que contiene toda la información sobre la evolución temporal del sistema, y estudiaremos

sus propiedades y algunas técnicas para su resolución.

18.2 La ecuación de Hamilton Jacobi

Dado un sistema mecánico descripto por variables canónicas {(pi,qi)}, aprendimos en la clase

anterior que podemos hacer transformaciones canónicas para describirlo con nuevas variables

{(Pi,Qi)}. Concentrémonos en particular en aquéllas cuya función generatriz es del tipo F1(Qi,qi, t).
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Para tales transformaciones, sabemos que las reglas de transformación se escriben

K(Pi,Qi, t) = H(pi,qi, t)+
∂F1

∂ t

pi =
∂F1

∂qi
Pi =

∂F1

∂Qi

Una pregunta posible es si podemos encontrar una transformación canónica que simplifique la

solución de las ecuaciones de Hamilton resultantes. Por ejemplo, si fuéramos capaces de construir

una función F1 particular tal que el nuevo hamiltoniano se anule

K(Pi,Qi, t) = 0

entonces las nuevas ecuaciones de Hamilton resultarían triviales

Q̇i =
∂K
∂Pi

= 0 Ṗi =− ∂K
∂Qi

= 0

y se podrían resolver muy simplemente como Qi = αi y Pi = βi, en términos de constantes de

integración αi,βi.

Supongamos que la función generatriz que cumple esta propiedad es F1 = S(qi,Qi, t). La condición

de que se anule el nuevo hamiltoniano puede entonces escribirse como

H
(

∂S
∂qi

,qi, t
)
+

∂S
∂ t

= 0

donde reemplazamos los impulsos utilizando la regla de transformación que escribimos más

arriba. Hemos obtenido una ecuación diferencial en derivadas parciales de primer orden que se

conoce como ecuación de Hamilton-Jacobi. Esta ecuación determina la primera función principal

de Hamilton S(qi,Qi, t) la cual, como veremos, contiene la solución completa del movimiento del

sistema.

Ejemplo: partícula no-relativista en tres dimensiones

Dada una partícula no relativista que se mueve en el espacio tridimensional con

coordenadas xa, tenemos que su hamiltoniano se escribe como

H(xa, pa) =
p2

a

2m
+V (xa)

con lo que la ecuación de Hamilton-Jacobi se puede escribir inmediatamente

1
2m

(
∂S
∂xa

)2

+V (xa)+
∂S
∂ t

= 0

Como vemos, es una ecuación no lineal, por lo que en principio puede resultar nada

trivial resolverla.

Ejercicio:

Escriba la ecuación de Hamilton-Jacobi para una partícula libre relativista que se mueve

en tres dimensiones.
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La ecuación de Hamilton-Jacobi para un sistema con D coordenadas {qi} tiene D+1 derivadas,

con lo que su solución se escribirá en términos de D+1 constantes de integración αi,α. Nótese

que, dado que en la ecuación sólo aparecen derivadas de S, una de las constantes de integración

es aditiva. En efecto, si S(qi,αi, t) es solución de la ecuación, entonces S(qi,αi, t)+α también lo

será. En cuanto a las demás constantes de integración, sin pérdida de generalidad las podemos

identificar con los valores constantes de las nuevas coordenadas Qi = αi.

Dada una solución de la ecuación, podemos escribir la transformación canónica en la forma

pi =
∂S
∂qi

(qi,αi, t) Pi =
∂S
∂αi

(qi,αi, t) = βi

de donde se puede invertir para obtener una solución completa del problema

qi = qi(αi,βi, t) pi = pi(αi,βi, t)

Es decir que obtuvimos una solución para el movimiento del sistema, en términos de las constantes

de integración αi,βi, a partir de la primera función principal de Hamilton S(qi,αi, t) que es solución

de la ecuación de Hamilton-Jacobi.

Ejemplo: relación con la mecánica cuántica

Es interesante notar que la ecuación de Hamilton-Jacobi para una partícula no relativista

que se mueve en tres dimensiones se parece mucho a la ecuación del iconal que

obtuvimos en la sección 13.3, cuando discutíamos el principio de acción estacionaria.

Podemos hacer más precisa esta correspondencia escribiendo la ecuación de onda de

la mecánica cuántica, es decir la ecuación de Schrœdinger

− }2

2m
∂ 2Ψ

∂x2
a
+V (xa)Ψ = i}

∂Ψ

∂ t

en la cual, y sin pérdida alguna de generalidad, podemos insertar una función de onda

de la forma

Ψ(xa, t) = e
i
} S(xa,t)

para obtener

− 1
2m

(
i}

∂ 2S
∂x2

a
−
(

∂S
∂xa

)2
)
+V (xa)+

∂S
∂ t

= 0

Ahora bien, como sucedía en el caso del iconal antes discutido, cuando la longitud

de onda es mucho menor que la escala característica del problema (que aquí viene

dada por la distancia típica en la que el potencial experimenta cambios apreciables)

podemos descartar el término que contiene el laplaciano. Con esto tenemos

1
2m

(
∂S
∂xa

)2

+V (xa)+
∂S
∂ t

= 0

que no es otra cosa que la ecuación de Hamilton-Jacobi para una partícula no relativista

que se mueve en tres dimensiones.
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En otras palabras, la ecuación de Hamilton-Jacobi es la ecuación del iconal de la

mecánica cuántica, lo que implica que la mecánica clásica es su límite de óptica

geométrica.

Ahora bien, en la discusión sobre el principio de acción estacionaria, el análogo del

iconal en el sistema mecánico era su acción ¿Significa esto que la primera función

principal de Hamilton es la acción del problema mecánico?

Para tener una intuición sobre el significado físico de la primera función principal de Hamilton,

escribamos su derivada temporal en la forma

Ṡ =
∂S
∂qi

q̇i +
∂S
∂ t

El segundo término de esta expresión se puede obtener de la ecuación de Hamilton-Jacobi como

menos el hamiltoniano. Esto resulta en la expresión

Ṡ =
∂S
∂qi

q̇i −H
(

∂S
∂qi

,qi, t
)
= piq̇i −H(pi,qi, t)

La segunda igualdad pone de manifiesto que el valor numérico de esta expresión coincide con

el lagrangiano del sistema. Sin embargo, los impulsos son aquí funciones de las coordenadas

dadas por las derivadas de S, por lo que no se trata de la función lagrangiano propiamente dicha.

Integrando esta expresión en el tiempo, entre un instante inicial cualquiera donde las coordenadas

toman valores arbitrarios, hasta un instante final t donde las coordenadas valen qi, vemos que la

función principal de Hamilton coincide con la acción del problema, considerada como una función

del punto final de la trayectoria. El punto inicial no resulta relevante, ya que su contribución se

puede reabsorber en la constante aditiva α.

18.3 Separación de variables

Una técnica útil para encontrar soluciones de la ecuación de Hamilton-Jacobi es el método conocido

como separación de variables. Se trata de proponer una forma tentativa o Ansatz para la solución,

en términos de un conjunto de funciones desconocidas que dependen de variables diferentes.

Si la forma es la correcta, al insertarla en la ecuación de Hamilton-Jacobi ésta se separa en un

conjunto de ecuaciones distintas para cada función desconocida, donde cada ecuación depende

de un conjunto diferente de variables.

Por ejemplo, supongamos que el hamiltoniano no depende del tiempo. En ese caso la ecuación

de Hamilton-Jacobi toma la forma

H
(

∂S
∂qi

,qi

)
+

∂S
∂ t

= 0

Si proponemos una solución tentativa para la separación de variables en términos de dos funciones

W (qi) y s(t) con la siguiente forma aditiva

S(qi, t) =W (qi)+ s(t)
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la ecuación se reescribe como

H
(

∂W
∂qi

,qi

)
+

∂ s
∂ t

= 0

En esta ecuación, el primer término depende exclusivamente de las coordenadas y no del tiempo,

mientras que el segundo depende del tiempo y no de las coordenadas. La única forma que puedan

cancelarse es si ambos son constantes. Entonces podemos escribir

∂ s
∂ t

=−E

H
(

∂W
∂qi

,qi

)
= E

en términos de una constante de separación E. Vemos aquí que la primera ecuación sólo involucra

a la función s(t) y depende exclusivamente del tiempo, con lo que se resuelve inmediatamente

según s(t) =−Et +α , donde α es una constante de integración. Por otro lado la segunda ecuación

se denomina ecuación de Hamilton-Jacobi independiente del tiempo y depende exclusivamente

de las coordenadas. Determina la función W (qi) conocida como función asociada de Hamilton.

Dependiendo de la forma funcional del hamiltoniano, puede ser posible continuar con el proceso

de separación. En efecto, supongamos que el hamiltoniano puede escribirse como

H(pi,qi) = H(p j,q j,h(pk,qk))

donde las variables canónicas {(pi,qi)} con i ∈ {1, . . . ,D} entran separadas en dos subconjuntos

diferentes {(pk,qk)} con k ∈ {1, . . . ,D′} y {(p j,q j)} con j ∈ {D′+1, . . . ,D}, el primero de ellos sola-

mente dentro de una función h(pk,qk). En tal caso, la ecuación de Hamilton-Jacobi independiente

del tiempo se escribe

H
(

∂W
∂q j

,q j,h
(

∂W
∂qk

,qk

))
= E

Proponemos una solución tentativa para la separación de variables con la forma aditiva

W (qi) =W1(q j)+W2(qk)

donde cada uno de los términos depende de un subconjunto diferente de las variables. Insertando

esta expresión en la ecuación, ésta toma la forma

H
(

∂W1

∂q j
,q j,h

(
∂W2

∂qk
,qk

))
= E

Si ahora calculamos la derivada respecto de qk obtenemos

∂H
∂h

∂h
∂qk

= 0

Dado que por hipótesis ∂H/∂h 6= 0, esta condición implica que ∂h/∂qk = 0, es decir que h debe

tomar un valor constante

h
(

∂W2

∂qk
,qk

)
= γ
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donde γ es la constante de separación. Por otro lado, también se debe satisfacer la ecuación

original, que ahora se lee

H
(

∂W2

∂q j
,q j,γ

)
= E

En estas dos últimas ecuaciones, la primera determina completamente W2(qk) y depende de las

coordenadas {qk}, mientras que la segunda ecuación determina W1(q j) en términos de las {q j}.

Es decir que hemos separado la ecuación de Hamilton-Jacobi en dos ecuaciones que dependen

de un número menor de variables.

En los casos en los que el proceso arriba descripto se pueda repetir un número suficiente de veces,

podemos resolver analíticamente la ecuación de Hamilton-Jacobi para obtener la función principal

de Hamilton. Si en algún momento el proceso se estanca porque la dependencia del hamiltoniano

mezcla las variables de manera no separable, siempre se puede recurrir a métodos numéricos

para obtener una solución.

Ejemplo:

Dado el hamiltoniano

H =
p2

1
2m

+
p2

2
2m

+V (q2)

la ecuación de Hamilton-Jacobi se lee

1
2m

(
∂S
∂q1

)2

+
1

2m

(
∂S
∂q2

)2

+V (q2)+
∂S
∂ t

= 0

Con lo que podemos separar el tiempo, usando

S(q1,q2, t) =W (q1,q2)+ s(t)

Esto nos da una ecuación de Hamilton-Jacobi independiente del tiempo, con la forma

1
2m

(
∂W
∂q1

)2

+
1

2m

(
∂W
∂q2

)2

+V (q2) = E

mientras que la solución para la función s(t) es, como explicamos s(t) =−Et +α. En

la ecuación independiente del tiempo podemos identificar un sector que depende

exclusivamente de la coordenada q2

1
2m

(
∂W
∂q1

)2

+
1

2m

(
∂W
∂q2

)2

+V (q2)︸ ︷︷ ︸
h(p2,q2)

= E

lo que nos permite utilizar la solución tentativa para la separación de variables

W (q1,q2) =W1(q1)+W2(q2)

Reemplazando en la ecuación, obtenemos

1
2m

(
∂W1

∂q1

)2

+
1

2m

(
∂W2

∂q2

)2

+V (q2) = E
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Esto solo se puede satisfacer si se cumple independientemente que

1
2m

(
∂W1

∂q1

)2

+ γ = E
1

2m

(
∂W2

∂q2

)2

+V (q2) = γ

La ecuación para W1(q1) se puede resolver inmediatamente como

W1(q1) =−
√

2m(E − γ)q1 + γ1

donde γ1 es una constante de integración, y hemos hecho una elección particular del

signo en la raíz cuadrada. Por otro lado, la ecuación para W2 se puede reescribir en la

forma

∂W2

∂q2
=−

√
2m(γ −V (q2))

donde nuevamente hemos hecho una elección para el signo de la raíz cuadrada. De

aqué se obtiene la solución

W2 =−
∫

dq2
√

2m(γ −V (q2))+ γ2

con una nueva constante de integración γ2. Con esto, la solución general para la función

principal de Hamilton toma la forma

S =−
√

2m(E − γ)q1 −
∫

dq2
√

2m(γ −V (q2))+α +Et

donde hemos agrupado las constantes de integración aditivas en una nueva única

constante α = γ1 + γ2. La solución para las variables canónicas se escribe

p1 =
∂S
∂q1

=−
√

2m(E − γ) p2 =
∂S
∂q2

=−
√

2m(γ −V (q2))

β1 =
∂S
∂E

=−q1

√
m

2(E − γ)
+ t

β2 =
∂S
∂γ

= q1

√
m

2(E − γ)
−
∫

dq2

√
m

2(γ −V (q2))

Lo que se puede invertir parcialmente en la forma

p1 = mv0 p2 =−
√

2m(γ −V (q2))

q1 = v1(t − t0)+q0 t − t0 =
∫

dq2

√
2m

γ −V (q2)

donde hemos identificado las constantes de integración como β1 = t0, β2 = t0 −q0/v0,

v0 = −
√

2(E − γ)/m, siendo q0 y v0 los valores de la coordenada q1 y su derivada

temporal q̇1 en el instante inicial t = t0. Esto por supuesto coincide con la solución que

hubiéramos obtenido resolviendo simplemente las ecuaciones de Hamilton.

Nótese que elecciones distintas para los signos para las raíces cuadradas hubieran

resultado en soluciones que difieren en los signos de sus velocidades iniciales. Es-

ta aparición de diferentes ramas de soluciones es característica de las ecuaciones

diferenciales no lineales.
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18.4 Resumen

En esta clase, encontramos una descripción del movimiento en términos de una ecuación diferencial

en derivadas parciales para una función sobre el espacio de configuración. De este modo, la

Mecánica se parece al electromagnetismo o a la mecánica de fluidos, en el sentido de que sus

soluciones se describen como excitaciones propagándose en algún tipo de sustrato que llena todo

el espacio de configuración C .

Como sucedía con el principio de acción estacionaria, la ecuación de Hamilton-Jacobi nos permite

hacer contacto con el origen cuántico de las leyes de la Mecánica Analítica, interpretándolas como

límite de óptica geométrica de la ecuación de Schrödinger.



19. Vínculos hamiltonianos

19.1 Objetivos

Paul Adrien Maurice Dirac

En el capítulo 11 aprendimos a tratar vínculos en la for-

mulación lagrangiana, mediante el uso de coordenadas

adaptadas o bien con multiplicadores de Lagrange. El

primer método reduce el número de coordenadas ge-

neralizadas, mientras que el segundo agrega nuevas

coordenadas para representar las fuerzas de vínculo.

En cualquier caso, aún cuando todos los vínculos del

problema han sido incorporados a su lagrangiano, toda-

vía pueden aparecer vínculos adicionales al pasar a la

formulación hamiltoniana.

En efecto, al realizar la transformación de Legendre del

lagrangiano para obtener el hamiltoniano, puede darse

el caso de que no sea posible invertir algunos de los momentos generalizados para obtener

las correspondientes velocidades como función de los impulsos. Esto establece vínculos entre

impulsos y coordenadas, que debemos incorporar de algún modo a la formulación.

19.2 Vínculos hamiltonianos

Supongamos un sistema mecánico en cuya formulación lagrangiana ya hemos incorporado todos

los vínculos holonómicos en términos de coordenadas adaptadas, y todos los no holonómicos

utilizando multiplicadores de Lagrange. El espacio de configuración resultante C estará parametri-
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zado por coordenadas generalizadas {qi} con i ∈ {1, . . . ,D} (entre las cuales están incluidos los

eventuales multiplicadores de Lagrange que hayamos introducido), y la dinámica estará descripta

por un lagrangiano L(q̇i,qi, t).

El primer paso para obtener la formulación hamiltoniana del sistema consiste en calcular sus

momentos generalizados según la fórmula

pi =
∂L
∂ q̇i

≡ pi(q̇ j,q j, t)

A continuación deberíamos invertir esta expresión para obtener las velocidades generalizadas

como función de los impulsos y las coordenadas canónicas

q̇i = vi(pi,qi, t)

para con esto escribir el hamiltoniano como la transformada de Legendre del lagrangiano

H(pi,qi, t) = pi vi(p j,q j, t)−L(vi(pi,qi, t),qi, t)

Sin embargo, podría darse el caso que no fuera posible invertir las ecuaciones que definen los

impulsos canónicos para obtener la totalidad de las velocidades generalizadas {qi} con i ∈ 1, . . . ,D.

En el caso general, sólo podremos invertir para un subconjunto de velocidades, digamos D1 de

ellas, y restarán un cierto número de velocidades que no se podrán despejar en función de los

impulsos. Es decir que las ecuaciones

pl −pl(q̇i,qi, t)≡ φl(pi,qi, t) = 0 para l ∈ {D1 +1, . . . ,D}

no se podrán invertir, dando origen a un conjunto de vínculos entre las variables canónicas

φl(pi,qi, t) = 0 para l ∈ {D1 +1, . . . ,D}

Estos vínculos que aparecen como un obstáculo al intentar formular el formalismo hamiltoniano se

conocen como vínculos primarios.

Ejemplo: efecto Hall

Supongamos que tenemos una partícula cargada sometida a un campo magnético

uniforme de valor B en la dirección ǩ. Como hemos demostrado antes, el lagrangiano

que describe esta dinámica se lee

L =
1
2

m(ẋ2 + ẏ2 + ż2)− e(Φ(x,y,z)−Bxẏ)

nótese que dado que la velocidad en x es finita, siempre es posible poner un campo

magnético B tal que mẏ/2e� Bx con lo cual

L =
1
2

m
(
ẋ2 + ż2)+ eBxẏ+ eΦ(x,y,z)

En este lagrangiano, el momento generalizado en la dirección y está dado por

py = eBx
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con lo que tenemos la ecuación

py − eBx = φ(py,x) = 0

Pero aquí no entra la velocidad ẏ por lo que es imposible escribir vy(py) y tenemos un

vínculo primario.

Ejemplo: lagrangiano lineal en las velocidades

Si tuviéramos un lagrangiano lineal en las velocidades generalizadas

L = q̇i gi(q j, t)

donde gi(q j, t) son funciones arbitrarias de las coordenadas y el tiempo, entonces

tendríamos

pi = gi(q j, t)

Por lo tanto en la ecuación

pi −gi(q j, t) = φi(p j,q j, t) = 0

no se puede despejar q̇i como función de las variables canónicas (qi, pi). Esto implica

que tendremos un vínculo primario por cada coordenada qi.

Si llamamos Ecan al espacio parametrizado por las variables canónicas {(pi,qi)}, vemos que en

presencia de vínculos hamiltonianos este espacio no es accesible en su totalidad. Esto sucede

porque el movimiento tiene lugar en la hipersuperficie Evinc ⊂ Ecan determinada por los vínculos.

Como veremos más adelante, el espacio de estados físicos del sistema estará contenido dentro

de tal hipersuperficie E ⊂ Evinc.

19.2.1 Vínculos primarios y hamiltoniano total

Supongamos que escribimos un hamiltoniano tentativo para describir la evolución temporal de un

sistema con vínculos primarios como los que acabamos de definir, en la forma

H = piq̇i −L(q̇i,qi, t)

donde no nos hemos preocupado por invertir explícitamente las velocidades en función de los

impulsos, es decir que es por ahora una función de {qi, q̇i, pi} y eventualmente el tiempo. Calculando

la diferencial de esta función tendremos que

dH = pi dq̇i +d pi q̇i −
∂L
∂ q̇i

dq̇i −
∂L
∂qi

dqi

aquí podemos reemplazar las derivadas del lagraniano, usando la definición de los momentos

generalizados en el tercer término y las ecuaciones de Lagrange en el último, para obtener

dH = (pi −pi(q̇ j,q j, t))dq̇i +d piq̇i − ṗi(q̇ j,q j, t)dqi
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El primer término se anula dada la definición de los impulsos canónicos, incluso cuando alguno

de los momentos pi(q̇ j,q j, t) no sea invertible. Esto implica que el hamiltoniano no es una función

de las velocidades, incluso cuando hayamos fallado en resolverlas en términos de los impulsos.

Tomando las derivadas del hamiltoniano para reescribir la diferencial del lado izquierdo, tenemos

∂H
∂ pi

d pi +
∂H
∂qi

dqi = d piq̇i − ṗidqi

o bien, reordenando(
∂H
∂ pi

− q̇i

)
d pi +

(
∂H
∂qi

+ ṗi

)
dqi = 0

A pesar de que esta ecuación es sugerente, no podemos deducir de aquí que se cumplen las

ecuaciones de Hamilton. En efecto, dado que las variables canónicas deben satisfacer los vínculos

φl(pi,qi, t) = 0 con l ∈ {D1 +1, . . . ,D}, tenemos que sus diferenciales {(d pi,dqi)} deben cumplir la

restricción

dφl =
∂φl

∂qi
dqi +

∂φl

∂ pi
d pi = 0 con l ∈ {D1 +1, . . . ,D}

Esto nos impide poner d pi = 0 o bien dqi = 0 independientemente en la ecuación de más arriba,

para obtener de allí las ecuaciones de Hamilton. Esta restricción sólo deja D1 coordenadas e

impulsos canónicos cuyas diferenciales son independientes, por lo que solamente podríamos

extraer D1 ecuaciones de Hamilton.

Para resolver el problema, multiplicamos la última ecuación por una función arbitraria ul de las

variables canónicas y el tiempo

ul dφl = ul
∂φl

∂qi
dqi +ul

∂φl

∂ pi
d pi = 0

Ahora podemos sumar esta expresión a la diferencial de más arriba, para escribir(
∂H
∂ pi

− q̇i +ul
∂φl

∂ pi

)
d pi +

(
∂H
∂qi

+ ṗi +ul
∂φl

∂qi

)
dqi = 0

Aquí tenemos D1 coordenadas e impulsos canónicos para los cuales podemos escribir d pk = 0 o

dqk = 0 independientemente, con k ∈ {1, . . . ,D1}. Por otro lado, tenemos D−D1 funciones arbitrarias

ul que podemos ajustar de modo de anular los coeficientes de los diferenciales que restan. Esto

implica que la relación de más arriba se puede resolver, con lo que obtenemos las ecuaciones de

movimiento

q̇i =
∂H
∂ pi

+ul
∂φl

∂ pi
ṗi =−∂H

∂qi
−ul

∂φl

∂qi

φl(pi,qi, t) = 0

Donde en la segunda línea hemos agregado los vínculos primarios, que deben resolverse junto con

las ecuaciones. Es importante notar que en este punto todavía tenemos D1 funciones desconocidas

ul , por lo que el problema no está aún bien definido.

Podemos reescribir las ecuaciones en la primera línea usando paréntesis de Poisson, para obtener

q̇i = {qi,H}+ul{qi,φl} ṗi = {pi,H}+ul{pi,φl}
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φl(pi,qi, t) = 0

Lo que se puede reacomodar usando la regla de Leibniz y la bilinealidad de los paréntesis de

Poisson, según

q̇i = {qi,H +ulφl}−{qi,ul}φl ṗi = {pi,H +ulφl}−{pi,ul}φl

φl(pi,qi, t) = 0

El segundo término en las ecuaciones de la primera línea se anula al usar los vínculos, cumpliendo

una propiedad a veces se denomina nulidad débil. El conjunto de ecuaciones de movimiento puede

entonces escribirse como paréntesis de Poisson con una nueva magnitud, en la forma

q̇i = {qi,Htot} ṗi = {pi,Htot}

φl(pi,qi, t) = 0

donde hemos definido un hamiltoniano total según la fórmula

Htot(pi,qi, t) = H(pi,qi, t)+ul φl(pi,qi, t)

Con estas ecuaciones, podemos calcular la derivada total de cualquier función F de las variables

canónicas

Ḟ =
∂F
∂ pi

ṗi +
∂F
∂qi

q̇i +
∂F
∂ t

=
∂F
∂ pi

{pi,Htot}+
∂F
∂qi

{qi,Htot}+
∂F
∂ t

= {F,Htot}
∂F
∂ t

En conclusión, la evolución temporal puede ahora escribirse en términos de un hamiltoniano total

Htot que involucra D−D1 funciones desconocidas. Como veremos más adelante, estas funciones

no son completamente arbitrarias, sino que deben satisfacer requisitos de consistencia.

Nótese que en ningún punto en los cálculos de arriba hemos impuesto los vínculos dentro de

los paréntesis de Poisson. Esto se debe a que los mismos no involucran el valor de la función

φl(qi, pi.t) sino de sus derivadas.

19.2.2 Vínculos secundarios y hamiltoniano extendido

El procedimiento de la sección anterior permitió extraer las ecuaciones de movimiento para las

variables canónicas, a partir de un hamiltoniano total que contiene funciones desconocidas. Sin

embargo, esta construcción no garantiza que, dada una condición inicial que satisface los vínculos,

la evolución temporal mantenga tal restricción. Necesitamos asegurar las condiciones para que la

solución de las ecuaciones de Hamilton respete los vínculos a medida que transcurre el tiempo.

En otras palabras, tiene que cumplirse que la derivada temporal de los vínculos se anule

φ̇l = {φl ,Htot}= 0

Usando la forma explícita del hamiltoniano total, esto se puede escribir como una ecuación de la

forma

{φl ,H}+uk{φl ,φk}= 0
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Cuando esta restricción se aplica a los diferentes valores de l ∈ {D1 +1, . . . ,D}, puede dar origen

a cuatro tipos de situaciones

Inconsistencias: es decir ecuaciones que no pueden satisfacerse, del estilo 1 = 0. Esto

significa que el lagrangiano original es inconsistente. Por ejemplo, si definimos un sistema

unidimensional cuyo lagrangiano tiene la forma L= q, sus ecuaciones de Lagrange resultan en

1= 0 y son inconsistentes. Esto significa que no podemos empezar con cualquier lagrangiano,

sino solo con aquéllos que den origen a ecuaciones de Lagrange consistentes. No se trata

en realidad de ninguna restricción novedosa, ya que la venimos aplicando tácitamente desde

el comienzo del curso.

Consistencias: es decir ecuaciones que se satisfacen automáticamente, de la forma 0 = 0.

Esto sucede cuando ambos términos de la ecuación se anulan independientemente {φl ,H}=

0 y ∀k : {φl ,φk}= 0. Es decir que las ecuaciones de Hamilton calculadas con el hamiltoniano

total respetan automáticamente el vínculo φl(pi,qi, t) = 0 y lo mantienen a lo largo del tiempo.

Nuevos vínculos: se trata de relaciones que no involucran a los ul , sino solamente a las

variables canónicas. Aparecen cuando el primer término de la ecuación no se anula {φl ,H} 6=

0, pero el segundo sí ∀k : {φl ,φk}= 0. Podemos escribirlas en una forma similar a la de los

vínculos primarios

φl(pi,qi, t) = 0 donde ahora l ∈ {D2, . . . ,D1}

Debemos asegurar que estos vínculos secundarios también se satisfagan, y que se manten-

gan a lo largo del movimiento. Esto implica que sus derivadas temporales también deben

anularse, lo que a su vez puede dar origen a nuevos vínculos secundarios, y así sucesiva-

mente hasta agotar las relaciones de consistencia.

Restricciones sobre las ul : finalmente, para algunos de los vínculos φl obtendremos condi-

ciones que involucran a las variables ul , de la forma

{φl ,H}+uk{φl ,φk}= 0

Aquí el índice k recorre los valores k ∈ {D1 +1, . . . ,D}, mientras que el índice l corre sobre

sólo algunos valores dentro del conjunto {D2 + 1, . . . ,D}, aquéllos que tengan {φl ,φk} 6= 0

para algún valor de k. Esto establece un conjunto de relaciones lineales entre los uk, que

puede resolverse como

ul =Ul(qi, pi, t)+ vaVal(qi, pi, t)

Donde Ul(qi, pi) son soluciones particulares de la ecuaciones no-homogéneas, mientras

que Val(qi, pi) son soluciones de las ecuaciones homogéneas, multiplicados por coeficientes

arbitrarios va que son funciones del tiempo.
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Con esto, el hamiltoniano total puede reescribirse como

Htot(qi, pi, t) = H(qi, pi, t)+Ul(qi, pi, t)φl(qi, pi)︸ ︷︷ ︸
H ′(qi,pi,t)

+va Val(qi, pi, t)φl(qi, pi, t)︸ ︷︷ ︸
φa(pi,qi,t)

= H ′(qi, pi, t)+ vaφa(qi, pi, t)

Donde tanto H ′(qi, pi, t) como φa(qi, pi, t) son funciones completamente determinadas de las varia-

bles canónicas {(qi, pi)} y el tiempo, pero aún tenemos funciones indeterminadas del tiempo va.

Estas funciones afectarán la evolución temporal, dado que las ecuaciones de movimiento se leen

q̇i = {qi,Htot}= {qi,H ′}+ va{qi,φa} ṗi = {pi,Htot}= {qi,H ′}+ va{qi,φa}

Nótese que estas nuevas ecuaciones de movimiento no necesitan ser complementadas por los

vínculos, ya que nuestra construcción asegura que si los mismos se satisfacen en el instante inicial,

lo harán a lo largo de todo el movimiento. En otras palabras, el sistema evoluciona dentro de Evinc.

Sin embargo, la presencia de funciones arbitrarias en las ecuaciones de Hamilton implica que

las condiciones iniciales no determinan completamente la evolución ulterior. Al transcurrir el

tiempo, distintas elecciones de las funciones va resultarán en diferentes valores para las variables

canónicas. Esto implica que el espacio de estados E , que está definido por el conjunto de todas

las condiciones iniciales posibles, está contenido dentro de la hipersuperficie de vínculos E ⊂ Evinc.

Cualquier valor para las variables canónicas que satisfaga los vínculos puede ser considerado

como una condición inicial para el movimiento, por lo que éstas determinan completamente el

estado del sistema. Sin embargo, el estado del sistema no determina un valor único para las

coordenadas canónicas, ya que el sistema puede haber arribado a ese estado con cualquier

elección de las funciones va.

Las funciones arbitrarias va también afectan la evolución temporal de cualquier función de las

coordenadas canónicas

Ḟ = {F,Htot}= {F,H ′}+ va{F,φa}

Esto significa que si la función es un observable físico, entonces no debería depender de la elección

de las va. Con esto concluimos que los observables físicos están dados por aquéllas funciones de

las variables canónicas que satisfacen las restricciones

{F,φa}= 0

Una consecuencia interesante de esta definición se obtiene haciendo uso de la identidad de Jacobi,

para escribir

{{φa,φb},F}+{{φb,F},φa}+{{F,φa},φb}= {{φa,φb},F}= 0

De aquí vemos que el observable también queda invariante si sumamos al hamiltoniano términos

de la forma vab{φa,φb}, con vab nuevas funciones arbitrarias del tiempo. Esto nos permite definir un

hamiltoniano extendido

Hext(pi,qi, t) = H ′(pi,qi, t)+ vaφa(pi,qi, t)+ vab{φa(pi,qi, t),φb(pi,qi, t)}
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a partir del cual podemos definir nuevas ecuaciones de movimiento que tendrán el mismo contenido

físico.

q̇i = {qi,Hext} ṗi = {pi,Hext}

Estas ecuaciones definen la evolución más general posible para un sistema hamiltoniano con

vínculos. Los valores de las funciones arbitrarias va y vab no afectan los observables.

Un punto importante es que las funciones {φa,φb} podrían ser combinaciones lineales de los

vínculos primarios. En tal caso, no es necesario agregarlas en el hamiltoniano extendido dado

que ya se encuentran presentes en el hamiltoniano total. Otra opción es que al calcular {φa,φb}

obtengamos una combinación lineal que incluye algún vínculo secundario. En ese caso la función

sí contribuye con un término nuevo al hamiltoniano extendido. Una última opción, que será de

interés más adelante, es cuando las funciones {φa,φb} no son una combinación lineal de vínculos

ni primarios ni secundarios. En ese caso, también agregan nuevos términos al hamiltoniano

extendido.

19.2.3 Transformaciones de gauge

Según las definiciones de la sección anterior, las funciones arbitrarias en nuestro hamiltoniano

extendido no afectan el estado físico. Ahora bien ¿cómo se relacionan los valores de las coor-

denadas canónicas cuando los hacemos evolucionar a partir de la misma condición inicial con

diferentes elecciones para las funciones arbitrarias? Para ver esto, supongamos que hacemos una

evolución infinitesimal con un tiempo ε para una elección posible de dichas funciones, digamos va

y vab

qi(t + ε) = qi(t)+ ε
(
{qi,H ′}+ va{qi,φa}+ vab{qi,{φa,φb}}

)
pi(t + ε) = pi(t)+ ε

(
{pi,H ′}+ va{pi,φa}+ vab{pi,{φa,φb}}

)
El resultado dependerá de la dependencia temporal de las funciones indeterminadas va y vab. Si

las cambiáramos por funciones diferentes ṽa y ṽab, tendríamos

q̃i(t + ε) = qi(t)+ ε
(
{qi,H ′}+ ṽa{qi,φa}+ ṽab{qi,{φa,φb}}

)
p̃i(t + ε) = pi(t)+ ε

(
{pi,H ′}+ ṽa{pi,φa}+ ṽab{pi,{φa,φb}}

)
Con lo cual la diferencia entre evolucionar con va y vab respecto de hacerlo con ṽa y ṽab se puede

obtener restando ambos casos, como

q̃i(t + ε) = qi(t + ε)+ ε ((ṽa − va){qi,φa}+(ṽab − vab){qi,{φa,φb}})

p̃i(t + ε) = pi(t + ε)+ ε ((ṽa − va){pi,φa}+(ṽab − vab){pi,{φa,φb}})
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Esto tiene la forma de una transformación canónica generada por las funciones φa y φab, lo que se ve

más claramente si definimos los parámetros infinitesimales de transformación como εa = ε(ṽa −va)

y εab = ε(ṽab − vab), lo que nos permite reescribir la formula de arriba como

q̃i = qi + εa{qi,φa}+ εab{qi,{φa,φb}}

p̃i = pi + εa{pi,φa}+ εab{pi,{φa,φb}}

Pero sabemos que la evolución con va y vab y la evolución con ṽa y ṽab corresponden al mismo

estado físico. Esto quiere decir que las funciones φa y {φa,φb} generan las transformaciones

canónicas que no cambian el estado físico, que se denominan las transformaciones de gauge del

sistema.

Ejemplo: paréntesis de Dirac

Las transformaciones de gauge generadas por las funciones φa son muy similares a las

simetrías. Si bien no dejan invariantes las ecuaciones de movimiento, si lo hacen con

el estado físico que resulta de la evolución temporal. Por otro lado, sus generadores φa

son vínculos que, como vimos, se conservan a lo largo del movimiento.

Sin embargo, aparece una diferencia importante y es que el paréntesis de Poisson

de dos de tales cantidades conservadas {φa,φb} no necesariamente resulta en una

cantidad conservada. Esto sólo sucede cuando el resultado es una función de los

vínculos primarios o secundarios, pero como vimos más arriba también puede darse el

caso de que sea una función enteramente nueva. Por esta razón, los generadores φa

de transformaciones de gauge no constituyen una estructura de álgebra cuando se los

combina utilizando el paréntesis de Poisson, como sí sucede con los generadores de

cualquier simetría.

Podemos sin embargo idear una modificación del paréntesis de Poisson, conocida

como paréntesis de Dirac y definida por la fórmula

{F.G}D = {F,G}+{F,φk̄}[{φk̄,φl̄}]
−1 {φl̄ ,G}

donde estamos tomando la inversa de la matriz {φk̄,φl̄}. En esta expresión, los índices

k̄, l̄ corren sobre los vínculos de segunda clase, que son aquéllos cuyo paréntesis de

Poisson {φk̄,φl̄} no es una combinación lineal de los vínculos. Por contraposición los

vínculos de primera clase son aquéllos donde eso sí sucede.

Utilizando el paréntesis de Dirac, tenemos que {φa,φb}D sí es una combinación lineal

de los vínculos, con lo que recuperamos una estructura de álgebra. Esto resulta

particularmente importante a la hora de cuantizar un sistema mecánico con vínculos

hamiltonianos.
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19.3 Resumen

En esta clase, estudiamos la aparición de vínculos entre las variables canónicas, como una

obstrucción para la construcción del formalismo hamiltoniano a partir de la transformada de

Legendre del hamiltoniano. Fuimos capaces de encontrar las ecuaciones de evolución temporal,

en función de un hamiltoniano extendido que contiene funciones arbitrarias del tiempo.

Entendimos que los estados físicos son insensibles a la elección de tales funciones arbitrarias, y

que diferentes elecciones se relacionan entre sí por tranformaciones de gauge.
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