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Introducción

 

El objetivo de este trabajo es el de presentar cinco seminarios de Mecánica Cuántica, con el fin de que en las instancias finales del curso correspondiente, los alumnos reunidos por grupos, elĳan, preparen y exponen uno de ellos. Puede especularse con que el fin de tal labor, sea el coronar el final del curso con una aplicación de algún impacto, que resulte del empleo directo del contenido del curso. Pero no es así. Para entender acabadamente el contenido de cada uno de los siguientes seminarios, se requieren conocimientos que van más allá del contenido de Mecánica Cuántica que vimos hasta ahora. El objetivo didáctico de los seminarios es el de enfrentar al alumno de Astronomía con un problema nuevo, cuyo esquema formal tiene algunos elementos conocidos, pero otros no lo son. Es que cualquier trabajo de investigación supone el abordaje de conocimientos y metodologías que aún no hemos estudiado. Claro, se puede preguntar qué grado de comprensión puede alcanzarse en el tiempo acotado del que dispone un alumno. Eso depende de muchos factores. Pero la meta no es lograr una comprensión completa de los diferentes seminarios, sino sólo alcanzar algún grado de comprensión, aún parcial, de los mismos. Es el valor formativo de enfrentar un tema nuevo, con un formalismo no visto, lo que nos interesa.

La licenciatura en Astronomía es una carrera en que un porcentaje alto de sus gradu-ados se dedican a la investigación científica. Cualquier investigación científica supone un desafío similar al de estos seminarios. Es conveniente advertir al alumno, sin embargo, que si estos seminarios le resultan de muy difícil comprensión, no debe desalentarse: con todo, estos seminarios se encuadran dentro de un área del conocimiento específica. Es el área de la Mecánica Cuántica y sus aplicaciones. La Astronomía es mucho más amplia y comprende disciplinas muy diferentes. Cada persona encuentra su área de interés. En resumen entonces, el objetivo de estos seminarios es el de enfrentar al alumno con un desafío y ver cuán lejos llega en su comprensión.
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Dicho esto, vale la pena resumir el contenido de cada uno de los cinco seminarios. El orden de los mismos no es arbitrario: el primer seminario es el que se aleja menos del esquema formal del curso y en los siguientes se va incrementando el número de elementos nuevos. Esta afirmación puede inducir a elegir siempre el primer seminario. Pero no debe ser así. En términos ideales, se debería emplear el mismo esfuerzo para cualquiera de los mismos. En la exposición de los más difíciles, quizá se expongan dudas más que certezas. Pero los errores y dudas son muy útiles: nos enfrentan a nuestro desconocimiento y da lugar al debate del que surge el conocimiento. Resumamos ahora cada uno de los mismos.

Primer seminario: Interacción de la radiación con la materia. Empleando los conocimien-tos adquiridos en la teoría de perturbaciones dependiente del tiempo, se discuten las posi-bles transiciones atómicas debido al efecto de la radiación electromagnética. Se analizará la cuantificación del campo electromagnético con el fin de comprender el decaimiento espontáneo de un electrón en un nivel excitado de un átomo.

Segundo seminario: Materia proto-neutrónica con un campo magnético intenso. Se discutirá la construcción de una ecuación de estado para materia formada por protones y neutrones, con densidades en un rango de hasta tres densidades de saturación nuclear y un campo magnético intenso. No se analizará la interacción fuerte entre las partículas. Se discutirá la función de distribución de las partículas teniendo en cuenta el principio de Pauli. Debido a la presencia del campo magnético, se estudiarán los niveles de Landau para los protones.

Tercer seminario: Oscilaciones de neutrinos. Las oscilaciones de neutrinos son de enorme importancia astrofísica. En el curso de trabajos prácticos se estudia el problema en forma simplificada, considerando dos estados cuánticos de los neutrinos. En este capítulo se discute el caso realista de tres tipos de neutrinos.

Cuarto seminario: La desintegración del neutrón. Empleando nuevamente la teoría de perturbaciones dependiente del tiempo e introduciendo en forma fenomenológica la interacción débil, se mostrará un cálculo simple, pero realista, el valor de la vida media de un neutrón en el espacio libre.

Quinto seminario: El algoritmo de Shor en la computación cuántica. En el último tema del curso, se introducen conceptos de teoría de la información cuántica y computación cuántica. En este seminario se discute el algoritmo de Shor; que es quizá la aplicación
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mejor estudiada de computación cuántica. Por medio de este algoritmo, se puede des-componer un número grande en factores primos empleando una potencial computadora cuántica.

La bibliografía se cita en los mismos seminarios. Buscamos adoptar para cada semi-nario, el enfoque de un libro o publicación científica particular. Aquel libro o publicación de referencia, es señalado como tal.
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Capítulo 1

 

 

Interacción de la radiación con la

materia

 

Introducción

El título de este seminario es algo general. Abordaremos en realidad un tema más específico: la interacción de la radiación electromagnética con un átomo. Debemos notar que en el curso de Mecánica Cuántica, siempre hemos tomado a la interacciones sobre el átomo como una interacción clásica. Esto es, el campo magnético responsable del efecto Zeeman o el campo eléctrico que causa el efecto Stark, son campos clásicos. Por otra parte, en el curso de Física Moderna, se estudiaron situaciones experimentales como las observadas en el efecto fotoeléctrico, donde se afirma que existe una partícula, el fotón, que lleva una cantidad definida de energía dada por hν y cantidad de movimiento ~k, con c~k = hν. El fotón es la partícula asociada al campo electromagnético. Debemos intuir que detrás de los conceptos de fotón y radiación electromagnética, subyace la física cuántica. Algunas de estas ideas las desarrollaremos en este capítulo.

El fotón es, sin lugar a dudas, una partícula muy singular. Es un bosón que no tiene masa en reposo1, como mencionamos acarrea energía y cantidad de movimiento, y tiene spin 1. El hecho de que el fotón tiene spin 1, resulta del análisis de su polarización. De esta manera, comenzamos a discutir a la radiación electromagnética empleando la

1 Afirmar en este punto que “se mueve a la velocidad de la luz”, sería redundante; pues el fotón es

la luz.
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fraseología que empleamos para el electrón, el protón y el neutrón; esto es, términos cuánticos.

Vemos entonces que tenemos un objetivo, que es estudiar la interacción de la ra-diación electromagnética con un átomo. Y una disyuntiva, que consiste en describir o no a la radiación electromagnética en términos de la física cuántica. ¿Cómo debemos proceder frente a este problema? Cómo procedemos siempre frente a cualquier problema físico: modelar al mismo en los términos más simples que podamos e ir sofisticando el esquema en la medida en que no podamos reproducir la fenomenología. Comenzare-mos entonces tratando a la radiación electromagnética en términos clásicos y luego, lo haremos en términos cuánticos.

Este capítulo supone el conocimiento previo de la teoría de perturbaciones depen-diente del tiempo (ver por ejemplo [1]), seguimos el enfoque dado en el libro de G. Baym [2]; excepto para las secciones finales, donde analizamos el ensanchamiento de las líneas espectrales, en que empleamos los libros de A. P. Thorne [3] y D. Mihalas [4].

 

1.1. La radiación electromagnética desde el punto de

vista clásico

Básicamente, debemos describir a una onda electromagnética. Para ello, en esta sección trabajaremos con el gauge transversal, para el cual el potencial escalar de la radiación W (r, t), es cero y el potencial vector A(r, t), tiene divergencia nula,

∇ · A = 0. (1.1)

De este modo, los campos eléctrico y magnético, vienen dados en función del poten-cial vector como,

1 ∂ A(r, t)

E(r, t) = −         ,                     (1.2)

c    ∂t

B(r, t) = ∇×A(r, t). (1.3)

La dirección y la magnitud del flujo de energía por unidad de tiempo y de área, viene dado por el vector de Poynting, P ,

c

P =   E(r, t)×B(r, t).                    (1.4)

4π
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La ecuación que rige la evolución temporal de la radiación electromagnética para este gauge lejos de la fuente que la genera, viene dada por,

2 !

∇ −     A(r, t) = 0.                  (1.5) 2 2     1 ∂

c ∂t

Una solución no trivial de esta ecuación, es una onda plana, que viene dada por,

A       i(k · r−ωt      ∗ ∗   −i(k · r ( r , t ) = α λ e ) +− ωt) α λ e,             (1.6)

donde α es una constante, empleamos ω = ck y por la ec. (1.1), debe cumplirse,

λ · k = 0, (1.7)

donde λ es el vector de polarización. Cualquier onda A(r, t), se puede escribir como una superposición lineal de ondas planas de la forma (1.6), como,

A                         ∗        e ∗ √            ( r , t ) = A λ + A λ √ .      (1.8) kλ X    i(k · r−ωt)              −i(k · r− ωt) e                                 

V       kλ        V

k, λ

Naturalmente, esta es una expresión genérica, pues la suma sobre k, es una suma continua. Por otra parte, λ se suma sobre dos estados de polarización ortogonales entre sí y con k. Trabajamos en una caja de volumen V , tal que la onda sea periódica en los bordes de la caja. Las cantidades A , son factores de peso. Estos factores representan  kλ

a la amplitud de la onda electromagnética y están vinculados con la energía de la onda. Finalmente, la energía de la onda, promediada en un ciclo, viene dada por,

E    X 2 ω     2 = | A | .                (1.9) kλ 2 πc 2 k, λ

 

1.2.   El Hamiltoniano de interacción

En esta sección, construiremos un Hamiltoniano que representa a la interacción entre la radiación y la materia. Para ello, emplearemos las hipótesis de la sección anterior, donde modelamos a la radiación electromagnética por medio de un potencial vector A(r, t); que como señalamos, es aún un modelo clásico para la radiación. El modo de introducir un potencial vector en la ecuación de Schrödinger, en por medio de la sustitución,

e

p → p − A(r, t), (1.10)

c
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donde p, es la cantidad de movimiento. Podemos escribir el Hamiltoniano como,

H   1             2 e = p − A ( r , t ) + V (r, t),               (1.11) 2 m c

donde V (r, t) representa a otras interacciones, más allá de la radiación electromagnética. Por ejemplo, en el caso del átomo de hidrógeno, en V (r, t) colocamos a la interacción coulombiana (que es central e independiente del tiempo). Es conveniente escribir al Hamiltoniano, como la suma de dos términos,

H = H0 + Hint, (1.12)

donde,

p 2

H0 =     + V (r, t),                           (1.13)

2m

e

Hint = −    [p · A(r, t) + A(r, t) · p] .              (1.14)

2mc

Esta separación resulta del desarrollo del término entre corchetes elevado al cuadrado en la ec. (1.11), donde hemos despreciado el término,

1   2 e

A2(r, t),

2m c2

ya que es del orden de       2 ∼ 1 /c. Vale la pena notar que el conmutador [p, A(r, t)], resulta,

p · A(r, t) − A(r, t) · p = −i~ ∇ · A, (1.15)

de esta manera, por la ec. (1.1), tenemos que solo en el gauge transversal el conmutador en cuestión es cero.

Debe resultar obvio que nuestro interés se focaliza en el Hamiltoniano de interac-ción. También, que emplearemos la Teoría de Perturbaciones dependiente del tiempo (ver Caps. 13 y 14, en [1]). De esta manera, tomaremos los niveles cuánticos que resul-tan de H0 y estudiaremos las transiciones que inducen Hint. Antes de seguir adelante, generalizamos el Hamiltoniano de la ec. (1.14), para un sistema de muchas partículas. Supondremos que todas las partículas tienen la misma masa y carga (claro, subyace la idea de la nube de electrones de un átomo). Suponiendo que tenemos N partículas, resulta,

Hint = −        [p · A(r , t) + A(r     p ] .           (1.16) i i i , t ) · i 2 e   X N

mc i=1
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Podemos reescribir este operador de un modo más conveniente, definiendo primero al operador j(r), como,

j       1 X N                 p p i i ( r ) ≡ δ ( r − r i ) + δ ( r − r i ) .          (1.17) 2 m m i =1

Al ver su definición, podemos pensar que el operador j(r) representa a la corriente de partículas en el sistema. Esto es parcialmente cierto, pues la definición rigurosa de la corriente de partículas debe tener en cuenta a la ec. (1.10). Dadas las propiedades de la función delta de Dirac, resulta evidente que,

e Z

Hint = −    dr j(r) · A(r, t)                   (1.18) c

Esta es la interacción que emplearemos para estudiar la interacción de la radiación con la materia.

 

1.3.   Absorción y emisión inducida de la luz

Partiendo del Hamiltoniano de la ec. (1.18), reemplazamos la expresión de A(r, t), dada en la ec. (1.8); que corresponde a una superposición de ondas planas. Obtenemos,

 

H    e       "                                 # − iωt iωt X e e ∗ ∗ int = − A j · λ √ + A · λ √ ,      (1.19) kλ − k kλ jk c V V k, λ

donde definimos,

jk   Z                    N                     1 X p p i k · r i i k · r i · i e i k r ≡ d r j ( r ) e = + e i .        (1.20) 2 m m i =1

Desarrollaremos ahora una expresión para el cálculo de la probabilidad de absorción de la luz por un átomo. Suponemos que el haz de luz incidente, dado por la ec. (1.8), resulta de la superposición incoherente de diferentes ondas planas. Este requisito de incoherencia lo colocamos para descartar efectos de interferencia de la luz. Modelamos el proceso pensando que tenemos un electrón en un átomo, éste absorbe energía de la radiación incidente y debido a ello, pasa a un estado de mayor energía. Llamamos al estado inicial |1i y al final |2i; cuyas energías son E 1 y E2, respectivamente. Pedimos,
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además, que E 1 < E2. Para calcular la probabilidad de transición por unidad de tiempo, empleamos la Regla de Oro de Fermi, en su expresión dada por la ec. (14.28) en [1]:

2                  2 π e

Γabs                                                 2                   2 = δ ( E − E − ~ ω ) | A | |h 2 | j · λ | 1 i|.        (1.21) 1                     2      1 → 2; kλ                 kλ ~ V c2              −k

Frente a esta expresión, la pregunta inmediata debe referirse al motivo por el que de los dos términos de la ec. (1.19), se eligió el primero. La respuesta está contenida en la misma expresión (1.21): debemos detenernos en la delta de Dirac, en este caso, vemos que,

E 2 = E1 + ~ω. (1.22)

Sabemos que ω > 0 y partimos de la hipótesis de que E 1 < E2. De esta mane-ra, la condición (1.22), se cumple. Por otra parte, si tomábamos el segundo término, tendríamos,

E 2 + ~ω = E1, (1.23)

de imposible cumplimiento para ω > 0 y E 1 < E2.

Sumamos ahora sobre k y sobre λ, para obtener la probabilidad total de transición por unidad de tiempo en pasar del estado |1i, al estado |2i,

Γabs      1   X         2 2 π e    2         2 = δ ( E − ω | | 2 j 1 → 2 2 − E 1 ~ ) A |h | · λ | 1 i|.      (1.24) kλ − V ~ c 2 k k, λ

En el siguiente paso, convertimos la suma sobre k, en una integral según,

V 1 X Z   2          Z    2 k dkd Ω ωdωdΩ → =,               (1.25) (2 π ) 3 (2 πc ) 3 k

que nos lleva a,

Γabs      2 2      2      Z       X πe ω 21        2                2 = d Ω | A | |h 2 | j · λ | 1 i| .          (1.26) 1 → 2 kλ ~ 2 c 2 (2 πc ) 3 − k λ

Debemos notar que integramos sobre ω empleando la delta de Dirac, con lo cual tenemos ω21 = (E2 − E1)/~.

Suponiedo que la radiación incidente subtiende un ángulo sólido ∆Ω y posee polar-ización λ, promediando el vector de Poynting en un ciclo, la cantidad total de energía por unidad de tiempo transportada por el haz incidente es,

V 1 X 2                         4 ω ω 21 2 21         2 | A | = ∆Ω | A |.                (1.27) kλ kλ 2 πc (2 πc ) 4 k
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Notemos que empleamos la notación ∆Ω, para el ángulo sólido de la radiación inci-dente, que toma un valor finito. De este modo, podemos introducir la intensidad2, que denotaremos como I(ω21), según la expresión,

ω 4

I               21          2 ( ω 21                     kλ ) = ∆Ω | A |,                        (1.28)

(2πc)4

que nos permite reescribir la ec. (1.26), como,

4 2 2 π e

Γabs                                          2 = I ( ω 1→2              21      − ) |h 2 | j · λ | 1 i|                   (1.29) k

~2    2 c 2 ω 21

Discutimos ahora la probabilidad de transición por unidad de tiempo, cuando la partícula inicialmente se encuentra en un estado excitado y decae a un estado de menor energía. Este proceso se denomina “emisión inducida”. Llamamos |2i y |1i, a los estados inicial y final, respectivamente. Notemos que tenemos que E 2 > E1. Esto es, hemos invertido el estado inicial con el final respecto del caso de la absorción: ahora la partícula “cae” a un estado de menor energía. El primer punto que debemos inspeccionar es cuál o cuáles son los términos de la interacción (1.19), que contribuyen al decaimiento. Por inspección, vemos que al implementar la interacción en la Regla de Oro de Fermi, la conservación de la energía (léase, la delta de Dirac), nos lleva a las siguientes relaciones,

E 1 = E2 + ~ω       del primer término de la interacción,        (1.30) E 1 = E2 − ~ω       del segundo término de la interacción.      (1.31)

Ya que E2 > E1 y que ω > 0, solo puede cumplirse la relación (1.31), proveniente del segundo término de la interacción. Empleando nuevamente la Regla de Oro de Fermi, tenemos para la emisión inducida,

Γem. ind     1   X         2 2 π e    2       ∗   2 = δ ( E + ~ ) | A | |h 1 | 2 → 1 1 − E 2 ω jk · λ | 2 i|,     (1.32) kλ V ~ c 2 k, λ

Donde hemos omitido varios pasos algebráicos, pues son idénticos a los de la absorción. De esta manera, la expresión final para la emisión inducida, resulta,

4 2 2 π e

Γem. ind                                 ∗     2 = I ( ω 2→1                 21 2 ~ ) |h1|        | i|                    (1.33) jk 2                         · λ 2 2

c ω21

2 Las dimensiones de intensidad son: energía por unidad de área y por unidad de ángulo.
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El valor para ω21, es el mismo que el de la absorción.

Por otra parte, de las propiedades (5.2) en [1], tenemos,

h                          ∗ 2 | j · λ | 1 i = h 1 | · λ|2i,                       (1.34) −k jk

por lo cual, de la comparación de las ecs. (1.29) y (1.33), concluimos que,

Γabs          em. ind = Γ                              (1.35)

1→2      2→1

Tanto en el caso de la absorción, como en la emisión inducida, el campo electro-magnético cede o recibe una cantidad de energía dada por ~ω21. Interpretamos que esta es la energía del fotón intercambiado. Consideremos ahora todos los fotones de la onda electromagnética, donde cada fotón tiene una energía ~ω. Debemos recordar el vínculo entre ω y k, dado por ω = ck. A partir de estos elementos, podemos escribir,

X

E =     ~ω N ,                     (1.36) kλ

k, λ

donde N   es el número de fotones en el modo k, λ. Ya habíamos calculado esta energía kλ

en términos de        2 A, en la ec. (1.9). De la comparación entre ambas ecuaciones kλ

resulta,

2    2

|A   | =       N   .                     (1.37) kλ kλ ω 2      π~c

Empleando esta relación, junto a las ecs. (1.32) y (1.34), podemos escribir,

Γ abs       X 2 2 4 π e                             2         em. ind = δ ( E − E 1 → 2 2 1 − ~ ω ) |h 2 | j · λ | 1 i| N = Γ.    (1.38) − k kλ 2 → 1 V ω k, λ

De esta manera, podemos expresar la probabilidades de transición por unidad de tiempo en función del número de fotones. Debemos notar, a partir de la ec. (1.37), que si conocemos el número de fotones, conocemos A , a menos de una fase. Señalamos  kλ

al comienzo, que partimos de radiación electromagnética incoherente. Eso equivale a afirmar que no conocemos la relación de fases. En otras palabras, la incoherencia del haz inicial es equivalente a afirmar que del mismo solo conocemos el número de fotones. Debemos notar que al introducir a los fotones, pasamos a un tratamiento semi–cuántico de la radiación, pues el fotón supone la cuantización de la radiación electromagnética. De hecho, la fase relativa de la componentes de la radiación y en número de fotones, son cantidades complementarias (como la posición y la cantidad de movimiento).
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Antes de terminar esta sección, vale la pena hacer un comentario adicional sobre el decaimiento inducido. Como ya discutimos, el decaimiento tiene lugar ya que incide un fotón que induce el decaimiento. Frente a esto, todos sabemos que dado un electrón en un estado excitado, éste terminará en el estado fundamental después de algún tiempo. Aún si sobre el mismo no incide ninguna radiación. Este decaimiento se denomina espontáneo y lo discutiremos más adelante. Pero en esta sección, lo que realmente nos interesa es el decaimiento inducido. En particular, el hecho de que es inducido por un fotón y como consecuencia del decaimiento se emite un segundo fotón. Este segundo fotón está en fase con el primer fotón. De esta manera, si colocamos muchos sistemas cuánticos idénticos e inducimos un decaimiento en uno, que genera dos fotones en fase, que induce el decaimiento en otros dos sistemas, que producirán otros dos fotones en fase, al repetir muchas veces este proceso, tendremos muchos fotones, todos en fase. Este es el principio de funcionamiento del láser3.

 

1.4.   Cuantificación del campo electromagnético

Como en la sección anterior, comenzaremos analizando la absorción. Mostramos que podemos describir a la radiación electromagnética incoherente por medio de un estado cuántico de fotones; donde afirmamos tener N    fotones en el modo kλ. Recordando kλ que el fotón es un bozón, podemos tener dos o más fotones con los mismos números cuánticos. De esta manera, podemos construir un estado cuántico normalizado para la radiación electromagnética como,

|N    , N    , ... , N   , ... i,                      (1.39) k 1 λ 1 k 1 λ 1 kλ

donde tenemos N     fotones en el modo k λ . Los estados así definidos son ortonor-k i λ i i i

males; esto es, son ortogonales a menos que tengan el mismo número de fotones en cada modo kiλi. Para tratar de fijar ideas, si estudiamos la absorción y el estado (1.39), es el de partida, el estado final cuando la absorción ocurre en el modo kλ, es,

|N    , N    , ... , N    − 1, ... i,                   (1.40) k 1 λ 1 k 1 λ 1 kλ

3 La palabra “láser”, es una sigla en inglés: Light Amplified by Stimulated Emission of Radiation (Luz

amplificada por emisión estimulada de radiación).

Facultad de Cs. Astronómicas y Geofísicas   |  UNLP                                                          20


EDUARDO BAUER

 

donde observamos que tenemos un fotón menos en el modo kλ.

Ya mostramos la descripción cuántica de la materia y vimos que pasamos de un estado |1i, a un estado |2i. Ahora agregamos la cuantificación del campo electromagnético y pedimos que el operador de transición haga también que pasemos del estado dado por la ec. (1.39) a la (1.40). Es conveniente unificar la notación, juntando la parte correspondiente a la materia, con la de la radiación,

|1i ⊗ |   ... , N    , ...   i   →   |1; N      , N      , ... , N    , ... i,           (1.41) kλ k 1 λ 1 k 1 λ 1 kλ |2i ⊗ | ... , N     − 1, ... i   →   |2; N      , N      , ... , N    − 1, ... i.       (1.42) kλ k 1 λ 1 k 1 λ 1 kλ

Debemos construir ahora un operador que nos lleve del estado (1.41) al estado (1.42); y además, dado el Principio de Correspondencia, debemos pedir que al emplear ese operador en la Regla de Oro de Fermi para calcular la probabilidad de transición por unidad de tiempo, obtengamos el resultado anterior (ec. 1.29, o por simplicidad 1.21). Llamamos a este operador ˆ Hint. Para construir este operador, comencemos analizando la energía. Recordando que se absorbe un fotón en el estado kλ, la energía del estado (1.41) es,

Energía inicial           X 0 = E 1 + ~ ck N 0 0,                (1.43) k λ

k0      0 , λ

mientras que la energía correspondiente al estado (1.42) resulta,

Energía final           X 0 = E 2 + ~ ck N 0 0 − ~ck.             (1.44) k λ

k 0      0 , λ

Empleemos ahora la Regla de Oro de Fermi. Existe aquí un punto sutil, que puede pasar desapercibido. Cuando usamos la Regla de Oro de Fermi en la sección anterior, en la delta de Dirac, aparece la diferencia de energía de los estados de partícula y la energía del campo externo. Ahora no tenemos campo externo, pues el estado cuántico lo contiene, por lo cual deja de ser “externo”. Ahora, tenemos un sistema cerrado, donde la radiación electromagnética es parte de nuestro espacio de Hilber, como lo vemos en las ecs. (1.41) y (1.42). Por lo tanto, en la delta de Dirac, tendremos la diferencia de energía entre el estado inicial y final. Escribamos entonces la Regla de Oro de Fermi,

Γabs          2π                                                  ˆ                              2 = δ ( E 2 −E 1 − ~ ck ) |h 2; N , ..., N − 1 , ... | H | 1; N k λ int , ..., N , ... i|. 1 → 2; kλ k ~ 1 1 kλ 1 λ 1 kλ

(1.45)
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Debemos exigir ahora que el resultado sea el mismo que para el caso anterior. Para ello, debemos pedir que el elemento de matriz valga,

|h ˆ                          2                  2                2  2;  N  , ..., N  −  1  , ...  |  H  |  , ...  i|  k  e2  1 1; N     , ..., N            =        |A    | |h2|j     · λ|1i| =  λ             int  1  kλ  k  1  λ  1  kλ  2  kλ  −  k  V c

e2         2 2 π ~ c

=                  2 N |h 2 | j · λ | 1 i| .                    (1.46) kλ     −k

V c2    ω

Analizando esta expresión, vemos que el operador ˆ Hint, debe tener una parte que actúe sobre la materia, de la forma j    · λ, y otra parte que disminuya el número de − k fotones; junto a ciertas constantes. Proponemos,

H ˆ        e     X                        ˆ 0 † 0 ∗ int = − √ A 0 0 j 0 · λ + ˆ A 0 · k λ 0 λ − k 0 , k λ jk      (1.47) c V 0 0 k , λ

donde debemos notar que por medio del símbolo                 ˆ ( ˆ ) , le dimos a A 0 0 , el carácter de k λ operador. Este operador actúa sobre el subespacio de fotones. Su acción debe ser la de reducir en uno el número de fotones en el modo   0    0 k λ. La presencia del segundo término en la ec. (1.47), hace que ˆ H int sea hermítico (ver la propiedad 3, de la Sec. 5.1.2 en [1]).

El análisis que sigue, es quizá el punto más importante de este seminario. Vayamos un paso a la vez. Ya dĳimos que la acción de ˆ A 0 0 , debe ser la de reducir en uno el k λ número de fotones en el modo kλ, esto es,

A ˆ |1; N    , ..., N   , ...i ∼ |1; N     , ..., N    − 1, ...i,        (1.48) kλ k 1 λ 1 kλ k 1 λ 1 kλ

donde de esta expresión, podemos decir que el operador ˆ A    aniquila un fotón en el kλ modo kλ. Esta terminología puede sonar un poco belicista, pero veremos enseguida que se enmarca en la terminología de lo que se da en llamar “segunda cuantificación”, donde se introducen operadores de creación y aniquilación. Sigamos con nuestro razonamiento. En la interacción ˆ Hint, ya ningún otro término actúa sobre el subespacio de fotones. Luego, en el bra, para que el elemento de matriz de la interacción sea no nulo, debemos tener:

|j; N      , ..., N     − 1, ...i, k 1 λ 1 kλ

donde el estado de partícula j, puede ser cualquiera; pero el de fotones debe ser exacta-mente el indicado, con el mismo número de fotones en todos los estados y con un fotón menos en el estado kλ. Escribamos el elemento de matriz de la interacción para nuestro problema de interés,

h                             ˆ 2; N , ..., N − 1 , ... | H   |                    , ...i           (1.49) k int 1; N , ..., N . 1 λ 1 kλ k 1 λ 1 kλ
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Reemplazamos ahora la expresión para ˆ Hint, de la ec. (1.47), teniendo en cuenta la propiedad dada por la ec. (1.48), con lo que tenemos,

h2; N     , ..., N    − 1, ...|H   |1; N k 1 λ int      , ..., N    , ...i   = ˆ                                    e 1                                                − √ h2| j   · λ|1i kλ

k1λ1     kλ                    −k c V

× h                      ˆ N , ..., N − 1 , ... | A   |N      , ..., N    , ...i.                               (1.50) k 1 λ 1 kλ kλ k 1 λ 1 kλ

De la comparación de esta ecuación con la ec. (1.46), obtenemos,

s 2     q π ~ c

hN    , ..., N    − 1, ...|A   |N     , ..., N   , ...i =             N    ,      (1.51) k 1 λ 1 kλ kλ k 1 λ 1 kλ kλ ω ˆ                            2

donde esta identificación es válida a menos de una fase, que tomaremos como igual a uno. Prestemos especial atención al punto que sigue. Ahora, tomamos el complejo conjugado de este elementos de matriz,

h                           ˆ                      ∗ N , ..., N − 1 , ... | A | N , ..., N , ... i   = k 1 λ 1 kλ kλ k 1 λ 1 kλ

 

=            ˆ† h N , ..., N , ... | A |N     , ..., N   − 1, ...i = k 1 λ 1 kλ kλ k 1 λ 1 kλ r      q 2 π ~ c 2 =N    .    (1.52) kλ ω

Resumimos ahora los resultados de las ecs. (1.51) y (1.52), para mostrar la acción

de los operadores ˆ       ˆ† A y A   , sobre estados cuánticos de fotones como, kλ kλ

r 2      q π ~ c

A |N    , ..., N   , ...i   = ˆ                                    2    N   |N    , ..., N   − 1, ...i,       (1.53) kλ k1λ1     kλ                  kλ    k λ ω 11     kλ r 2 A ˆ†                                    π 2      q ~ c | N , ..., N , ... i =N    + 1   |N      , ..., N    + 1, ...i . (1.54) kλ k 1 λ 1 kλ kλ k λ ω 1 1 kλ

Debe ser obvio para el lector que para obtener la ec. (1.54), hicimos el reemplazo N                                                  ˆ − 1 → N , en la ec. (1.52). De este modo, vemos que la acción del operador A   , kλ kλ kλ es la de disminuir en una unidad el número de fotones, mientras que la acción de ˆ† A ,  kλ

es la de incrementar en uno el número de fotones. Dada esta propiedad, decimos que A ˆ                                                                                ˆ† , es el operador de aniquilación o destrucción de fotones, mientras que A   , es el kλ kλ operador de creación (de fotones). El uso de los operadores de creación y aniquilación se enmarca en el modelo de la llamada segunda cuantificación, como ya lo habíamos nombrado.

Las relaciones dadas por la ecs. (1.53) y (1.54), son particularmente importantes y este hecho lo discutiremos con más cuidado en la próxima sección. Debemos detenernos
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un poco en cómo se obtuvieron. Pensemos en la física del proceso que estamos analizan-do. Si bien este esquema es aplicable en muchas situaciones físicas, focalicemos nuestra atención en los niveles electrónicos de un átomo de hidrógeno, donde la radiación elec-tromagnética o bien hace que el electrón salte a un estado de mayor energía, o bien la misma radiación provoca el decaimiento a un estado de menor energía (asumiendo que el electrón inicialmente se encontraba en un estado excitado).

La teoría clásica de la radiación electromagnética predice en forma correcta la ab-sorción de radiación, que produce un salto del electrón a un estado de mayor energía. Pero falla en no ser capaz de predecir el decaimiento espontáneo del electrón. Cuando un electrón se encuentra en un estado excitado, después de algún tiempo decae a un estado de menor energía. Si este estado de menor energía no es el estado fundamental, seguirá decayendo hasta alcanzar el estado fundamental, que es estable. Empleando la teoría clásica de la radiación electromagnética, este decaimiento espontáneo no debería ocurrir. Debemos detenernos un minuto para analizar el significado de este hecho. El que la teoría clásica de la radiación electromagnética falle en predecir el decaimiento espontáneo no significa que la misma esté mal. Indica más bien que ocurre algo a nivel cuántico que va más allá del modelo clásico. Es por ello que en esta sección desarrolla-mos la cuantificación del campo electromagnético. Notemos que para poder elaborar el modelo cuántico, debimos ajustarlo pidiendo que reproduzca la absorción, calculada con la teoría clásica de la radiación electromagnética.

Hagamos una pequeña síntesis del razonamiento empleado: planteamos la cuan-tificación del campo electromagnético y ajustamos el modelo cuántico, pidiendo que reproduzca el resultado anterior para la absorción de la luz. Esto lo hicimos así, pues confiamos en el resultado de la absorción. Calcularemos ahora la emisión en términos puramente cuánticos. Recordemos qué es la emisión y cuáles son nuestros datos. Tene-mos al electrón de un átomo en un estado excitado cuya energía es E2 y éste decae a un estado cuya energía es E 1. Para determinar la energía del estado inicial y final, debemos incluir la del campo electromagnético,

Energía inicial            X 0 = E 2 + ~ ck N 0 0 ,                    (1.55) k λ

k0    0 , λ X 0

Energía final   = E1 +     ~ck N 0 0 + ~ck.               (1.56) k λ

k0    0 , λ

Enseguida emplearemos la Regla de Oro de Fermi. Para evitar dudas, en dicha regla la
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delta de energía resulta,

δ (Energía final − Energía inicial) = δ (E1 + ~ck − E2) . (1.57)

Recordemos que la delta de Dirac es par δ(x) = δ(−x). Ahora sí, empleamos la Regla de Oro de Fermi para la emisión,

Γemi        2π                                            ˆ                          2 = δ ( E − ck |h N , ..., N +1 , ... | int 2; 2 1; kλ 2 −E 1 ~ ) 1; H | N , ..., N , ... i|. → k λ kλ ~ 1 1 k 1 λ 1 kλ

(1.58)

Trabajamos ahora sobre el elemento de matriz,

h                              ˆ                                    e            ∗ 1; N , ..., N + 1 , ... | H | 2; N , ..., N k 1 λ 1 kλ int , ... i = − √ h 1 | jk · λ|2i k 1 λ 1 kλ c V

× h                      ˆ† N , ..., N + 1 , ... | A   |N      , ..., N   , ...i   = k 1 λ 1 kλ kλ k 1 λ 1 kλ r q e 2 π ~ c 2 ∗ = − h 1 | jk · λ | 2 i N + 1 ,                         (1.59) kλ c ωV

donde usamos la ec. (1.54), para saber la acción de ˆ† A . Tomando el módulo al cuadrado  kλ

de esta expresión y reemplazándola en la ec. (1.58), tenemos finalmente,

4 2 2 π c

Γemi                                            ∗    2 = δ ( E − E − ~ ω ) |h 1 | 2→1; kλ             2     1                           kλ jk · λ | 2 i| ( N + 1) .        (1.60)

ωV

Debemos notar que en lugar de tener N    como en la ec. (1.38), tenemos N   + 1. Este kλ kλ punto lo discutiremos con mayor detenimiento en la próxima sección.

 

1.5.   Discusión de la emisión espontánea

Cuando mostramos abs     em. ind Γ y Γ, en la Sec. 1.3; no habíamos cuantificado el campo electromagnético. Al hacerlo, nos encontramos con un factor N , en la absorción; y un  kλ

factor N    + 1, en la emisión. El factor N   , es el número de fotones en el estado kλ, kλ kλ en el haz de luz que incide sobre el átomo. Esto nos dice que si N    = 0, no se produce kλ la absorción. De acuerdo, esto suena demasiado obvio, ya que si no incide la luz, nada se puede absorber. Pero en nuestra defensa, si colocamos N    = 0, y no obtenemos cero kλ para la absorción, es porque algo estaba mal. Al menos es una prueba trivial.

Sin embargo, si colocamos N    = 0, para la emisión, no obtenemos un cero, ya que kλ

en este caso el factor multiplicativo es N    + 1, y ese número uno que aparece en la kλ

Facultad de Cs. Astronómicas y Geofísicas   |  UNLP                                                          25


EDUARDO BAUER

 

suma hace que emi Γ , sea no nulo para este caso. Naturalmente, ese número uno es lo que da cuenta de la emisión espontánea. Esto es, en ausencia de radiación electromagnética (N   = 0), se produce la emisión. kλ

Este es un punto conceptualmente muy importante. Debemos pensar cuál es el es-pacio de Hilbert de nuestro problema físico. Solo cuando tengamos el espacio de Hilbert completo, podemos estar seguros de nuestro resultado. Al tomar a la radiación electro-magnética como un campo clásico, estamos diciendo que nuestro espacio de Hilbert es el de los estados del átomo. En ese caso, empleando teoría de perturbaciones dependiente del tiempo, una perturbación externa puede inducir una transición entre de un estado a otro. Pero si no existe ninguna perturbación, el sistema debe permanecer en su estado.

Al cuantificar el campo electromagnético, aumentamos nuestro espacio de Hilbert al de los estados cuánticos de los fotones. Ahora bien, tenemos el estado inicial,

|2; N     , ..., N    , ...i,                              (1.61) k 1 λ 1 kλ

y nos preguntamos: ¿por qué este estado no es estable y en algún momento decae al estado,

|1; N      , ..., N     + 1, ...i? k 1 λ 1 kλ

La respuesta es porque dado el estado (1.61), existe una interacción dada por la ec. (1.47), que induce la transición. La existencia de esa interacción indica que el estado (1.61), no es estable. La interacción está en el átomo y no pondremos mucho énfasis en estudiarla en este trabajo. Sin embargo, aún en presencia de la interacción, ésta no sería capaz de inducir ninguna transición si nos quedamos con el espacio de Hilbert de los estados electrónicos del átomo. Es gracias a la ampliación del espacio de Hilbert en los estados del campo electromagnético, que la interacción puede actuar y dar lugar a la emisión espontánea.

Pensemos con un poco más de detalles todo esto. La interacción acopla los estados atómicos con la radiación electromagnética. En el caso del decaimiento espontáneo, ini-cialmente no tenemos ninguna radiación electromagnética. Si nuestra interacción actúa entre un estado atómico y la radiación, pero no hay radiación, entonces: ¿por qué actúa? Clásicamente, esto no tendría sentido. Cuánticamente pensamos en lo que se denom-ina una “fluctuación del vacío”. La interacción actúa, pues en el estado final sí habrá radiación. La emisión espontánea, como vemos, es un fenómeno puramente cuántico.
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Analicemos otro punto, que tampoco es del todo obvio. La interacción dada por la ec. (1.47), es interna en el espacio de Hilbert átomo–radiación electromagnética. Pense-mos ahora en un átomo aislado, al que no le llega ninguna radiación. Si está en su estado fundamental, seguirá indefinidamente en su estado fundamental, que es auténticamente estable. Pero si está en un estado excitado, decaerá después de algún tiempo. La inter-acción responsable del decaimiento es interna al átomo. El experimento nos dice que los estados excitados no son estables (como sí lo es el estado fundamental). Si construimos una ecuación que tome en cuenta la cuantificación de la radiación electromagnética, encontraríamos estados excitados del átomo que son “meta–estables”, esto es, existen solo por un cierto período de tiempo y luego decaen. Sabemos que existen estos estados por la frecuencia de la radiación electromagnética emitida. Alguien puede cuestionar el hablar de estados, cuando no son estables. Bueno, casi todo en física no lo es. En el Cap. 4, estudiamos el decaimiento del neutrón, ya que el neutrón no es una partícula estable y decae. Nadie cuestiona la existencia del neutrón. Tampoco la de los estados excitados de los átomos, a pesar de su inestabilidad.

En resumen, el decaimiento espontáneo nos enseña que debemos reveer nuestro modelo de los estados excitados. No se trata de un estado estable, al que llega el electrón y solo por medio de un agente externo logramos remover. En realidad, cualquier estado excitado es inestable y luego de algún tiempo decaerá.

 

1.6.   Transición dipolar eléctrica

El objetivo de esta sección es definir qué entendemos por una transición dipolar eléctrica. Al final, nombraremos también las transiciones dipolar magnética y cuadrupolar eléctrica. No buscamos hacer ningún cálculo con esto, sino sólo definir qué son esas transiciones. Introduciremos algunos conceptos sobre la radiación emitida por un átomo, cuyo núcleo suponemos fijo en el espacio. En general, la radiación electromagnética emitida por un átomo es mucho mayor que el radio atómico. Solo como un ejemplo algo burdo, la longitud de onda de la luz es del orden de los ∼ 5000Å, mientras que para el radio atómico tenemos un valor de ∼ 1Å. Cuando mostramos las expresiones para el cálculo de las probabilidades de transición por unidad de tiempo ( abs      emi Γ y Γ ), notamos

1→2    2→1
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que en sus expresiones aparece un elemento de matriz,

h         ∗ 1 | jk · λ|2i,

en el caso de la emisión y otro similar para la absorción. Ya que estamos analizando la radiación (o emisión), del átomo, nos concentramos en el elemento de matriz que mostramos. Podemos sacar fuera de elemento de matriz la polarización   ∗ λ, y concen-trarnos en el elemento de matriz,

Z

h                    −ik · r 1 | jk

|2i =    dr e      h1|j (r)|2i,                  (1.62)

donde repetimos la igualdad dada por la ec. (1.20). Al ver esta expresión, debemos fijar un origen de coordenadas a partir del cual medimos r, y la elección natural es fijar r = 0, en el centro del núcleo. Luego, hacemos un desarrollo en serie de potencias de ·  −  i  k  r  e,

alrededor de r = 0, con lo que tenemos,

Z

h1|jk |2i =     dr [1 − ik · r + ...] h1|j (r)|2i = Z

= h1|j |2i − i    dr k · r h1|j (r)|2i + ...         (1.63) 0

Nuestro interés, se concentra en la cantidad h1|j |2i, que resulta de integrar sobre r, 0 recordando la definición de j(r) (ver ec. 1.17) y las propiedades de la delta de Dirac. Al hacer esta integral, tenemos que,

X N

p = P , i

i=1

donde P , es la cantidad de movimiento total del sistema. Podemos escribir entonces,

j =   =   [R, H ], 0 0                     (1.64) m P   1 i~

donde,

X N

R =   r i,                   (1.65)

i=1

es el operador momento dipolar y H0, es el Hamiltoniano del átomo, sin radiación. Sobre el operador momento dipolar, para ser tal debe estar multiplicado por la carga, que es una constante. Notemos que medimos la distancia desde el punto donde se encuentra el núcleo atómico que concentra la carga positiva. Todos los electrones poseen la misma carga y la suma sobre los r i, nos da el centro de carga de los electrones (de carga
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negativa y del mismo valor que el núcleo, ya que el átomo es eléctricamente neutro). De ahí la denominación de operador momento dipolar. Usando ahora la definición de conmutador, tenemos,

i 1                     E 2 − E1 h 1 | ( R H 0 − H 0 R ) | 2 i = h1|R|2i,             (1.66) ~ i ~

donde (E2 − E1)/~ ≡ ω, es la frecuencia de la radiación. Reescribimos el elemento de matriz de la siguiente manera,

h1|jk |2i ∼ = −i ω d12, (1.67)

donde,

d12 ≡ h1|R |2i, (1.68)

es la parte no–diagonal del elemento de matriz del momento dipolar eléctrico; que resulta del orden más bajo en el desarrollo de exponencial en la ec. (1.62). Ahora, podemos

escribir   emi Γ     , dado por la ec. (1.60), como, 2 → 1; kλ

4 2 2 π cω

Γemi                                          ∗ 2 = δ ( E − E − ~ ω ) | d · λ | (N    + 1) .        (1.69) 2→1;kλ              2     1          12          kλ V

Puede ocurrir que el elemento de matriz dipolar eléctrico sea cero. En ese caso, decimos que se trata de una transición prohibida. Frente a esto, debemos incorporar el siguiente término en el desarrollo dado por la ec. (1.63). Luego de un poco de álgebra, este término se puede reescribir como la suma de dos contribuciones: una proporcional al momento angular orbital y la otra proporcional el momento cuadrupolar eléctrico. El momento angular orbital es proporcional al momento dipolar magnético (ver ec. (10.7), en [1]); por lo que a esta transición se la denomina dipolar magnética.

 

1.7.    Potencia irradiada

Con el fin de un uso posterior, mostramos brevemente una expresión para la potencia irradiada por la emisión espontánea. Partimos de la ec. (1.60), nos quedamos solo con la contribución proveniente de la emisión espontánea,

4 2 2 π c

Γemi. esp.                                              ∗     2 = δ ( E − E − ~ ω ) |h 1 | · λ | 2 i|.              (1.70) 2                        2      1 → 1; kλ              jk

ωV
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Esta expresión representa a la probabilidad de transición por unidad de tiempo, de que un electrón decaiga del estado 2 al 1, en forma espontánea. De esta descripción, debe ser obvio que su unidad de medida es 1/tiempo. Si la multiplicamos por la energía del fotón emitido ~ω, tenemos una potencia (energía/tiempo). De este modo, la potencia de la luz emitida con polarización λ, radiada en un ángulo sólido dΩ, en la dirección k, debido a la transición espontánea de 2 a 1, es,

d        X emi. esp. P λ = ~ ω Γ = 2 → 1; kλ

k∈dΩ Z       2        2 2 dω ω 4 π c                          ∗

=                               2 d Ω ~ ω δ ( E − E − ~ ω ) |h 1 | (2πc) 3                  2      1 jk · λ |2i| , (1.71)

ω

donde empleamos la ec. (1.25). Ahora integramos empleando la delta de Dirac, con lo que tenemos,

d       2   2 P λ      21 ω e

=         ∗     2 |h 1 | jk · λ | 2 i|.                  (1.72)

dΩ    2πc3

Para evitar dudas, demos un detalle del cálculo,

δ(E2 − E1 − ~ω) = δ (~[(E2 − E1)/~ − ω]) =

=   δ(ω21 − ω),                  (1.73) ~ 1

con ω21 = (E2 − E1)/~. Para la potencia por unidad de ángulo sólido, la expresión más común es la que emplea la aproximación dipolar eléctrica. De este modo, a partir de la ec. (1.67), podemos escribir,

d       4   2 P ω e

λ      21            ∗ 2 = | d · λ |.                          (1.74)

dΩ    2πc3     12

Debemos notar que esta expresión se refiere al decaimiento espontáneo de un electrón de un átomo, entre dos niveles de energía discretos del mismo.

 

1.8.    Sobre el ancho de línea del espectro atómico

En la Sec. 14.3, en [1], mostramos lo que se da en llamar el “ancho natural” de las líneas del espectro. Cuando calculamos el espectro de un átomo, obtenemos un conjunto de valores E1, E1, ... , que son los autovalores del operador Hamiltoniano y por lo tanto, su valor es exacto. Sin embargo, sabemos que si tenemos a un electrón
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en un estado excitado, éste decae después de algún tiempo. Acabamos de estudiar este proceso, denominado emisión espontánea. En esa misma sección, discutimos brevemente la relación,

∆E ∆t & ~,

donde además,

1

Γ ∼   .

∆t

De esta manera, dado     em. esp. Γ ( Γ, claro); tenemos una incertidumbre en la energía dada por ∆E , que es un cierto ancho para la línea espectral. En los hechos, este ancho es muy pequeño. Es intrínseco del sistema cuántico y por lo tanto, no se puede modificar. Es por ello que se denomina ancho natural. Otro modo de entender al ancho natural, es por medio de un análisis de Fourier: una frecuencia pura supone una función senoidal (o cosenoidal) de longitud infinita. Cualquier onda de longitud finita, es la suma de infinitas frecuencias y esa incertidumbre en la frecuencia es el ancho natural de la línea. En lo que sigue, discutiremos otras fuentes que determinan el ensanchamiento de las líneas espectrales.

Pensemos en los espectros que medimos de la luz proveniente de estrellas de cualquier tipo. Un espectro es una gráfica de la intensidad de la luz en función de su frecuencia o de su longitud de onda. En general, se observan picos en donde debemos tener los autoestados de energía. Estos picos a veces son muy estrechos, otras veces son anchos. Si el espectro es en función de la frecuencia, el ancho del pico es el ancho de la línea, a menos de la constante de Planck. Este comportamiento no se puede explicar por medio del ancho natural de la línea. Luego, existen otros fenómenos físicos que ensanchan las líneas espectrales. En esta sección trabajaremos solo con espectros de emisión. Valen consideraciones similares para los espectros de absorción, que no discutiremos. El ensan-chamiento de las líneas no es el objetivo central de este capítulo, pero dada la discusión sobre el ancho natural directamente vinculado al decaimiento espontáneo, es pertinente hacer mención al mismo. Dada una estrella, enumeremos las fuentes principales del ensanchamiento de las líneas al ser observadas en la Tierra 4 :

1. El ancho natural de la línea, ya discutido.

4 Si bien nos estamos refiriendo a una estrella, las mismas consideraciones valen ante la formación de

plasma. El plasma puede generarse por medio de un pulso láser de alta energía, lo cual permite estudiar este problema en un laboratorio.
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2. El ensanchamiento Doppler o ensanchamiento térmico.

3. El ensanchamiento por colisión.

4. El ensanchamiento instrumental.

Esta separación es algo arbitraria y muchos autores la reducen a las tres primeras. Daremos ahora una breve discusión sobre cada punto y luego mostraremos un fragmento del esquema microscópico del ensanchamiento por colisión. Antes, debemos notar, que seguimos un enfoque microscópico cuántico. El problema del ensanchamiento de las líneas espectrales es muy complejo y nuestro enfoque microscópico es en cierta forma poco práctico para la mayoría de las aplicaciones. Los ensanchamientos son a veces de tipo lorentzianos y otras veces de tipo gaussianos. Para construirlos, se recurre a modelos semi–fenomenológicos, que no discutiremos. Como habíamos advertido, en esta sección solo se dan algunos elementos generales de un tema vinculado al de la interacción de la radiación con la materia.

Si las líneas se ensanchan, si tenemos un ∆E apreciable, entonces la probabilidad de transición también cambia, pues eventualmente podemos dar un salto entre dos estados cuánticos con menor energía. Cuando calculamos la probabilidad de transición por unidad de tiempo, colocamos una delta de Dirac para la energía, donde las energías están exactamente definidas. Si incluimos un ∆E , debemos reemplazar a la delta de Dirac por una distribución, con un cierto peso. No exploramos esa línea de estudio. Sin embargo, el ensanchamiento de línea observado, puede tener dos orígenes diferentes: puede ser intrínseco (como el ensanchamiento natural), o puede haberse originado con posterioridad a la emisión, que designaremos como ensanchamiento observacional. Solo el primero modifica la probabilidad de transición por unidad de tiempo. Ahora sí, vayamos a la discusión, punto por punto.

En primer lugar, el ancho natural de la línea ya fue discutido y es importante enfatizar que este ensanchamiento es en general muy pequeño. Es un ensanchamiento real de las líneas, esto es, se trata de un ensanchamiento intrínseco.

La segunda fuente, es el ensanchamiento Doppler o ensanchamiento térmico. Este es claramente un ensanchamiento observacional. En una estrella, los átomos junto al resto de las partículas presentes, se mueven debido a la agitación térmica. La velocidad media de las partículas crece con la temperatura y se mueven en todas direcciones;
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algunas se acercan al observador en la Tierra que está registrando su espectro, otras se alejan, etc. Ya que la velocidad de los átomos emisores es muy grande, la radiación emitida muestra el efecto Doppler, reduciendo o aumentando su frecuencia, de acuerdo con el movimiento relativo. Luego, al registrar el espectro, que resulta de la radiación emitida por un número muy grande de átomos, el corrimiento Doppler en ambos sentidos, produce un ensanchamiento de las líneas. Tomando cada átomo en forma individual, no se observaría ningún efecto si medimos el espectro en un sistema de referencia solidario con el átomo.

En tercer lugar, el ensanchamiento por colisión, a veces designado como ensan-chamiento por presión, resulta del efecto del choque de partículas sobre un átomo mien-tras emite radiación. Recordemos el primer párrafo de la Sec. 1.6, donde mostramos que la longitud de onda de la radiación emitida puede ser varios órdenes de magnitud mayores a los del átomo. Además, la radiación emitida es un paquete de ondas, cuya longitud es del orden del metro. Luego, el choque con otras partículas durante el proceso de radiación, va a alterar al sistema emisor. Una colisión, es la interacción del electrón que decae, con alguna partícula externa al átomo. El electrón, que es un leptón, puede interactuar con otras partículas por medio de la interacción electromagnética, débil y gravitatoria. El efecto de la gravedad es despreciable, mientras que la interacción débil puede tener algún efecto, pero no lo consideraremos. En una colisión el electrón puede dispersarse con otro electrón intercambiando un fotón virtual, puede experimentar la presencia de un campo magnético o el de un campo eléctrico. El campo eléctrico pro-duce un desdoblamiento de las líneas espectrales por efecto Stark, que merece un párrafo aparte.

El efecto Stark es el desdoblamiento de las líneas espectrales debido a un campo eléc-trico (ver por ejemplo la Sec. 12.3.2, en [1]). Debemos notar que el estado de agregación de la materia estelar es básicamente el de plasma. En nuestra experiencia cotidiana, te-nemos conocimiento de los estados sólido, líquido y gaseoso. Pero debemos imaginar al plasma: un estado fluido, con materia ionizada, pero neutro dentro de ciertas regiones o dominios. Luego, un átomo en una estrella está rodeado de iones. Cuando alguno de estos iones choca con un átomo durante el proceso de emisión, sus niveles de energía se desdoblan. Nuevamente, recordemos que el espectro que se mide en la Tierra resulta de un número muy grande de desintegraciones atómicas. Como el desdoblamiento es
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proporcional al campo eléctrico y este depende del ion particular y de las condiciones del choque, el desdoblamiento discreto en lo formal, será observado como un ensanchamien-to continuo de las líneas espectrales y se trata de un ensanchamiento intrínseco. Sobre este tercer punto, mostraremos algunos detalles de cálculo después de este resumen.

Finalmente, el cuarto punto se refiere al ancho que introduce el instrumento de medi-da. Sobra decir que se trata de un ensanchamiento observacional. Este ensanchamiento depende del instrumento que se emplee para medir el espectro. Cuando uno dibuja so-bre un papel el esquema de un espectrómetro, supone una fuente de luz perfectamente colimada. La realidad es algo más complicada. La luz debe ser colimada para su análisis y al hacerlo perdemos intensidad. Una buena colimación, implica una intensidad muy baja. Si la intensidad es alta, entonces la colimación es baja. Esto introduce un error sistemático, que se traduce en un ensanchamiento de las líneas. No ahondaremos en este punto, que nombramos por completitud. Un análisis más completo sobre las diferentes fuentes de ensanchamiento de línea, se puede encontrar en el libro de Thorne [3]; en particular, en ese libro se expone detalladamente la fenomenología del tema.

Nuestro interés en el ensanchamiento de las líneas espectrales se refiere a los ensan-chamientos intrínsecos (natural y colisional), pues modifican la probabilidad de transición. Un análisis completo de estos puntos, excede el objetivo de este capítulo. Sin embargo, en la siguiente subsección, daremos algunos elementos del perfil de línea para el caso del ensanchamiento colisional.

1.8.1.    Perfil de línea para el ensanchamiento por colisión

Es pertinente comenzar poniendo en claro cuál es nuestro problema físico y cuáles son nuestras hipótesis. Dados los espectros de emisión, observamos que no tenemos líneas, sino ciertos picos con un determinado ancho. Para entender este ancho, analizamos diferentes explicaciones físicas. Una de ellas son las colisiones. Luego, debemos construir un modelo para dar cuenta de las colisiones. Cualquier modelo, por definición, es una simplificación de la realidad.

Desde el punto de vista clásico, una forma de entender el ensanchamiento por coli-siones, es el siguiente: dada una emisión en ausencia de colisiones, el átomo emite un paquete de ondas. Mientras que una onda senoidal o cosenoidal infinita, tiene una fre-
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cuencia pura, un paquete de ondas es la suma de muchas frecuencias; esto resulta de la representación de Fourier del paquete de ondas. Ahora bien, si en algún punto de la emisión, el átomo sufre una colisión, la emisión sufrirá una alteración o discontinuidad. Las alteraciones o discontinuidades requieren de una suma de frecuencias mucho mayor que aquella sin alteraciones. Este es un hecho conocido del análisis de Fourier. Al tener que considerar muchas más frecuencias, la dispersión en frecuencia ∆ω, o equivalen-temente ∆E ; es mayor y por lo tanto, se observa un ensanchamiento en el espectro. Este modelo se denomina la “aproximación de impacto”. En lo que sigue, daremos solo algunos elementos de un modelo diferente. Este modelo es cuántico y se vincula mejor con el enfoque desarrollado en este capítulo.

Mostraremos ahora una introducción al modelo cuántico. En lo que sigue, adoptare-mos el enfoque dado por el libro de Mihalas [4]. Trabajaremos desde el comienzo con la aproximación dipolar dada en la Sec. 1.6. Recordemos la ec. (1.74),

d       4   2 P ω e

λ      if            ∗ 2 = | d · λ |,                           (1.75)

dΩ    2πc3     f i

donde cambiamos los índices 2 y 1, por i y f , para designar a los estados inicial y final, respectivamente.

Supongamos ahora que el estado final f, está degenerado. En ese caso, en la ec. (1.75), debemos sumar sobre los estados finales. Dado que estamos estudiando el de-caimiento espontáneo de un átomo, sabemos que tanto el estado inicial, como el final, se encuentran en el discreto. De modo que para el caso degenerado, tenemos simplemente,

d      X 4   2 P ω e λ if       ∗ 2 = | d f i · λ |.                    (1.76) d Ω 2 πc 3 f

Dado que en el caso discreto, ωif es un número completamente determinado, aún no mostramos ningún elemento que induzca un ensanchamiento de las líneas.

Consideramos ahora la interacción del átomo con otras partículas de su entorno. Debemos notar que si tenemos dos bolas de billar, el choque entre ellas se modela por medio de una interacción de contacto. Cuando tenemos electrones, los electrones no son pequeñas esferas similares a las bolas de billar, que chocan entre sí. La interacción entre dos electrones (uno de nuestro átomo y el otro del átomo con el cual colisiona), es una reacción de dispersión, en la que se intercambia un fotón virtual5, que es el mediador

5 Las partículas como los fotones, pueden ser reales o virtuales. Un fotón real se puede medir con un

detector; mientras que el virtual no.

Facultad de Cs. Astronómicas y Geofísicas   |  UNLP                                                          35


EDUARDO BAUER

 

de la interacción electromagnética. El modo de modelar este proceso, no es único. En lo que sigue, esquematizamos una forma de hacerlo con fines puramente didácticos.

Vamos a postular un Hamiltoniano total Ht, tal que conste de tres contribuciones,

H t = HA + HC + VAC, (1.77)

donde HA es el Hamiltoniano del átomo emisor, HC lo es de la partícula con la que colisiona y VAC es un término de interacción entre el átomo y la partícula con la que colisiona. Ahora bien, con el fin de llamar la atención sobre una obviedad, nos pregun-tamos: ¿todas las colisiones ocurren exactamente de la misma forma? Claramente no es posible tal situación. Luego, para cada átomo que es objeto de un choque con otra partícula en el momento de su decaimiento, debemos asignar valores particulares para HC y VAC. Escribimos la ecuación de Schrödinger para este problema,

∂|ψit

Ht|ψit = i~      .                         (1.78)

∂t

Más allá de la posibilidad práctica en poder resolver esta ecuación, en el supuesto de que logremos hacerlo, tendremos un conjunto de soluciones. Asumamos que |αit y |βit, rep-resenta al estado inicial y final del átomo, respectivamente. En ese caso, en la ec. (1.68), debemos reemplazar los estados del átomo, por estos estados nuevos, que dan cuenta del efecto del Hamiltoniano total,

dβα ≡ thβ| R |αit. (1.79)

Esta es una propuesta de cálculo correcta en lo formal, pero impracticable en los hechos. Cuando dos átomos colisionan, puede ocurrir que éstos se ionicen, si la colisión es lo suficientemente importante. Cuando pensamos que el efecto es modificar el ancho de la línea de emisión, significa que el efecto de los términos HC y VAC, es extremada-mente pequeño, ya que su resultado solo es ensanchar la línea de emisión del átomo. Pensándolo en términos perturbativos, VAC puede representar el efecto de un campo eléctrico o magnético. Comenzamos la oración anterior refiriéndonos al análisis pertur-bativo, pues como sabemos, el campo magnético no se deriva de un potencial escalar, pero su efecto se puede parametrizar por medio de tal potencial (ver por ejemplo el efec-to Zeeman, Sec. 12.3.1, en [1]). De este modo, en términos perturbativos encontramos un desdoblamiento discreto de las líneas espectrales, que puede ser de origen eléctrico,
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como el efecto Stark; o magnético, como el efecto Zeeman. Cuando se mide el espectro, el mismo no es el producto de la emisión de un solo átomo, sino de la suma de la emisión de muchos átomos, cada uno con un desdoblamiento de líneas discreto. En la práctica, se va a observar un ensanchamiento de las líneas espectrales, ya que cada átomo experi-mentará un corrimiento de sus líneas diferente, lo cual, potenciado por el ensanchamiento natural, hace poco probable diferenciar líneas en términos experimentales.

1.8.2. Breve discusión del ensanchamiento de las líneas espec-

trales

En los hechos, excepto por el ensanchamiento natural de las líneas, el ensanchamien-to es un efecto observacional. En el caso del efecto Doppler esto ya fue discutido, el ensanchamiento instrumental lo es por construcción y debemos detenernos en el ensan-chamiento colisional.

Nuestro sistema cuántico es un átomo, sumergido en un entorno de materia. A ese nivel, no existe la interacción de contacto, sino que el átomo se ve sometido a campos eléctricos y magnéticos. Un solo átomo, en estas condiciones, sigue siendo un sistema cuántico, cuyas energías son discretas. Es verdad que existen sistemas cuánticos, como la red cristalina de un conductor, que muestran bandas de energía, pero ese no es el caso de un átomo. No debemos perder de vista, que buscamos explicar el ensanchamiento de una línea centrada experimentalmente en el punto predicho por el modelo cuántico no–relativista de la ecuación de Schrödinger, con solo el potencial Coulombiano y sin considerar aún al spin. Llamemos a este resultado, “línea ideal”. Luego, las interacciones que sumamos, tanto las intrínsecas del átomo, como las externas, no pueden modificar dramáticamente al espacio de Hilbert del átomo, pues en ese caso tal modelo difícilmente daría cuenta de las líneas observadas.

Afirmamos que el ensanchamiento colisional es un ensanchamiento intrínseco, en contraste con el observacional. Colisionalmente, las líneas de átomo individuales, se des-doblan en líneas discretas. Lo hacen en diferente medida y su efecto global muestra un ensanchamiento continuo al ser medido en un detector. En realidad, resulta de líneas discretas que por su número y debido a razones instrumentales, se registran como contin-uas. Esto es simililar a la explicación de Plank de la radiación del cuerpo negro. De todos
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modos, la clasificación como ensanchamiento intrínseco, se debe a que auténticamente, este desdoblamiento abre la posibilidad de transiciones con energías diferentes a las que resulten de las líneas ideales.

En el caso colisional, existe una discrepancia entre el modelo clásico (corte abrupto del paquete de ondas de emisión) y el modelo cuántico. El modelo clásico supone para la colisión una escala de tiempo corta, dada por el corte abrupto del paquete de ondas. Esto también, suma un número continuo (y por lo tanto infinito), de frecuencias. El modelo cuántico, como el efecto Stark, supone una escala de tiempo para la perturbación externa mucho mayor que el decaimiento. Además, supone un desdoblamiento discreto de los niveles de energía. Sobre esta discrepancia, elegimos dejarla como un problema abierto para el lector.

Revisando la bibliografía sobre el tema en los libros de Thorne [3] y Mihalas [4], vemos que este es un tema extensamente estudiado y de gran relevancia. Sin embargo, vemos también que domina el análisis semi–fenomenológico. El mismo consiste en ajustar curvas mayormente lorentzianas y gaussianas, según ciertas consideraciones físicas. Un análisis microscópico cuántico para el caso colisional, no está desarrollado más allá de ciertas consideraciones generales.

 

1.9.    Conclusiones

En este capítulo, estudiamos la interacción de la radiación con la materia. Nos limi-tamos a radiación que solo puede inducir transiciones entre estados discretos del átomo. Analizamos luego el decaimiento espontáneo, que requiere de la cuantificación del campo electromagnético. Además, discutimos en términos generales el ensanchamiento de las líneas espectrales. Desarrollamos el tema, según el siguiente orden:

1. Los niveles de energía de un átomo aislado, que estudiamos en el curso de Mecánica

Cuántica, empleando la ecuación de Schrödinger, con un potencial Coulombiano.

2. Las transiciones que induce la radiación electromagnética en el átomo y la cuan-

tificación de la radiación electromagnética, que nos permite entender la emisión espontánea del átomo.

 

Facultad de Cs. Astronómicas y Geofísicas   |  UNLP                                                          38


EDUARDO BAUER

 

3. La interpretación de los espectros experimentales, sobre la base la discusión del

ensanchamiento de las líneas espectrales.

Este es el orden en que estudiamos el tema. Sin embargo, vale la pena señalar que la cronología de estudio científico del tema es exactamente el orden inverso: primero se observan los espectros y se llega a un átomo aislado por un proceso de abstracción, pues un átomo aislado no representa una situación experimental simple. En una estrella o en una fuerte emisora, tenemos átomos estrechamente rodeados por radiación y otros átomos. Nuestro análisis, sin embargo, es de tipo teórico y en ese caso el orden de la presentación debe ir de lo más simple a lo más complejo; de una situación ideal a una real.

A los efectos de este seminario, en el marco del primer curso de Mecánica Cuántica, el resultado que debemos rescatar es que cuando pasamos de la física de un átomo aislado a uno que interactúa con el medio, el paradigma de niveles cuánticos estables deja de valer. Ahora vemos que los niveles excitados existen, pero no son estables; pues el electrón luego de emplear cierto tiempo en ellos, decae en forma espontánea. Al continuar con el estudio del tema, analizando el contenido de los espectros medidos, vemos que ahora juega un papel el instrumento de medida. En cada paso que damos, se multiplican los modelos y las aproximaciones. Al punto de que una interpretación microscópica– cuántica completa del ensanchamiento de las líneas espectrales, permanece aún como un problema abierto.
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Capítulo 2

 

 

Materia proto-neutrónica con un

campo magnético intenso

 

Introducción

En el curso de Mecánica Cuántica, nos concentramos en estudiar la física de una partícula en términos cuánticos. Solo cuando ya contamos con todo el andamiaje formal de la asignatura, abordamos el problema del átomo de hidrógeno, que es un problema de dos cuerpos. Al igual que en la Mecánica Clásica, el problema de dos cuerpos se puede resolver en forma exacta. Análogamente, el problema de tres o más cuerpos, no tiene una solución exacta. Si bien en este primer curso focalizamos nuestro interés en los problemas que tienen una solución exacta, analizamos algunas restricciones que deben cumplir los sistemas complejos. En particular, en la Sec. 15.1.2, discutimos el Principio de Exclusión de Pauli. En esta sección, agrupamos a las partículas en dos grandes grupos: el de los fermiones, que son aquellas partículas de spin semi–entero y los bosones, con spin entero. No podemos tener dos fermiones con el mismo conjunto de número cuánticos, según lo establece en Principio de Exclusión de Pauli.

Pensemos ahora en un objeto estelar, como una estrella de neutrones. Es poco probable que alguien se sorprenda al afirmar que está constituida principalmente por neutrones. También, pero en menor medida, posee otras partículas como protones, elec-trones, muónes, etc. Ahora bien, los neutrones son fermiones pues tienen spin–1/2. No es el objetivo de este seminario discutir las propiedades de una estrella de neutrones,
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pero vale la pena señalar que la densidad de partículas en el interior de una estrella de neutrones es superior a la densidad nuclear. Esta densidad crece a medida que nos acercamos al centro de la estrella. En este punto, es también pertinente comentar que una estrella de neutrones no es un núcleo gigante: un núcleo atómico se mantiene liga-do por la acción de la interacción fuerte, que es de corto alcance. Como en el núcleo hay protones, éstos experimentan la repulsión electrostática que es de alcance infinito. Luego, en algún momento al agregar partículas al núcleo, aumentando así su radio, éste se hace inestable pues la fuerza nuclear de corto alcance no logra compensar la repulsión electrostática. Por otra parte, una estrella de neutrones se mantiene ligada por la acción de la gravedad, la cual es irrelevante para un núcleo. Operativamente, podemos definir a un núcleo como un sistema de hadrones ligados por la interacción fuerte, caracterización esta que no cumple la estrella de neutrones.

Hechas estas aclaraciones, vayamos al aspecto que nos interesa de las estrellas de neutrones. En astrofísica, se dice que lo que evita el colapso de tal estrella, es “la presión de degeneración de los neutrones”. Recordemos que en astrofísica se habla de sistemas degenerados para indicar que deben ser estudiados cuánticamente; no degenerados cuan-do admiten un tratamiento clásico y parcialmente degenerados, para un sistema que se puede analizar con algunos elementos cuánticos y otros clásicos. La llamada presión de degeneración no es otra cosa que el Principio de Exclusión de Pauli, que prohíbe que dos fermiones ocupen el mismo lugar. Es importante destacar que en esta discusión subyace una hipótesis fuerte: pensamos a los neutrones como partículas elementales. Pero no lo son, pues están formados por quarks. Pero esa es otra discusión.

De este modo, nos preguntamos con qué esquema formal debemos estudiar a un objeto como una estrella de neutrones. Ya que lo que evita su colapso es el Principio de Pauli, el tratamiento debe ser cuántico. También sabemos que se trata de un sistema de muchas partículas, por lo cual debemos recurrir a la Termodinámica y a la Mecánica Estadística. Claro, quien lee estas líneas puede objetar que establezcamos primero un marco formal, sin haber discutido aún qué aspectos de las estrellas de neutrones deseamos estudiar. Está implícito que no se trata de su órbita, sino de algún aspecto interno de la estrella. Cualquiera de los aspectos internos de la estrella se estudian dentro de este marco general. En lo que sigue, establecemos el aspecto particular de interés en este seminario.
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Resumamos lo discutido hasta ahora: para estudiar un sistema de muchos fermiones a nivel cuántico, emplearemos los métodos de la Termodinámica y la Mecánica Estadística. Vamos a modelar a una estrella de neutrones como un sistema formado por neutrones y protones, con una fracción fija de protones. Además, pensaremos que el sistema está sumergido en un campo magnético intenso. La motivación y las limitaciones de este modelo requieren de un análisis profundo, que desarrollaremos a lo largo del seminario en sí. El objetivo es calcular la ecuación de estado del sistema (EOS). La EOS es la función presión en función de la densidad. Estudiaremos además, el grado en que el medio se polariza debido al campo magnético. Dado que solo consideramos neutrones y protones, el sistema no es eléctricamente neutro. La neutralidad de carga, como en un átomo, puede lograrse incluyendo electrones. El incluirlos es el siguiente paso lógico en este desarrollo. Dada su pequeña masa, las propiedades que estudiaremos se ven débilmente afectadas por los electrones, lo cual justifica nuestra aproximación.

 

2.1.    Algunos elementos de Termodinámica

Estas pocas líneas no pueden reemplazar al curso de Termodinámica, junto con el de Mecánica Estadística. En lo que sigue, mostraremos algunos elementos de esas disciplinas, indispensables para la comprensión del seminario.

Enfrentamos entonces un problema nuevo: el de predecir propiedades de un número muy grande de partículas, en que la mecánica cuántica juega un papel relevante. Notemos que tenemos una teoría sólida para la física de una o dos partículas. Cuando tenemos muchas partículas, no nos interesa el comportamiento individual de cada partícula, sino el efecto colectivo del conjunto. Es válido preguntar qué ocurre en la frontera entre estos dos extremos; entre el de una o dos partículas y el de un número muy grande de las mismas. Bueno, quizá quienes más sepan del tema son los astrónomos, quienes deben resolver desde órbitas donde interactúan pocos cuerpos, hasta galaxias con millones de estrellas. Este ejemplo es de mecánica clásica; pero cuando clásicamente el problema es difícil, lo es aún más cuánticamente. Si bien este no es el asunto de este seminario, no podíamos dejar de nombrarlo.

La idea básica es simple: se construye una función, denominada en forma genérica
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como “potencial termodinámico”, que representa a la energía del sistema. Se varían los parámetros de esa función con el fin de minimizar a la misma. El mínimo del potencial termodinámico es el estado físico. Existen muchos potenciales termodinámicos según el problema físico que tratemos: para sistemas cerrados, para sistemas abiertos, cuando la temperatura es constante, cuando la presión es constante, etc. Modelamos a una estrella de neutrones como un sistema cerrado, con temperatura constante. Luego, el potencial termodinámico adecuado para el problema, es el potencial de Helmholtz F , que se define como,

F ≡ U − T S, (2.1)

donde U es la energía interna, T es la temperatura absoluta y S es la entropía. Debe ser obvio que F tiene unidades de energía. Por simplicidad, en esta expresión no hemos agregado aún el efecto del campo magnético. Para encontrar el mínimo de esta función, debemos diferenciarla. Al hacerlo y trabajando sobre la energía interna, tenemos,

X

dF = −SdT − P dV +   µidNi,                (2.2)

i

donde P es la presión y V el volumen. Por medio de la suma sobre i, se incluyó la posibilidad de que existan diferentes tipos de partículas (neutrones, protones, etc); donde µ i y Ni representan al potencial químico y al número total de partículas del tipo i, respectivamente. La minimización del potencial termodinámico nos permite obtener las funciones presión, entropía y potencial químico como funciones de la densidad. Por construcción tenemos,

!              !                !

∂F               ∂F                 ∂F

S = −        ,   P = −          y   µi =           .   (2.3)

∂T               ∂V                  ∂Ni V,N i T,N i V,T,Nj6=i

Discutamos ahora el potencial químico µ i, pues es particularmente relevante en nues-tro análisis. Ya que el número de partículas Ni es adimensional, el potencial químico tiene unidades de energía. El concepto de potencial químico es simple a partir de la ec. (2.2): es la cantidad de energía que se pierde o se gana, cuando el número de partículas cam-bia en una unidad. De este modo, puede ser una cantidad positiva, negativa o nula. El potencial químico µ i, se vincula con la densidad parcial de partículas del tipo i, que designaremos como ρi. Debemos señalar que ρi es la densidad de número; esto es, el número de partículas por unidad de volumen. Usamos esta densidad por conveniencia, pero debemos recordar que conocemos las especies de partículas con las que trabajamos
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(neutrones, protones, electrones, etc.), por lo cual a partir de la densidad de número se obtiene en forma inmediata la densidad de materia.

Para ver cómo se obtiene la ρi a partir de µi, definimos primero el número de ocupación, n(ε). El número de ocupación se define como el número de partículas que poseen una energía dada. Su expresión depende en primer lugar de si los efectos cuánticos son o no importantes, y en el caso de que lo sean, de si tratamos con bosones o con fermiones6. Damos ahora las expresiones para los números de ocupación correspondientes a las tres situaciones descritas:

ni(ε) =              ,     estadísctica de Maxwell–Boltzmann.    (2.4) e 1

(ε−µi)/kB T + 0

ni(ε) =              ,     estadísctica de Bose–Einstein.          (2.5) e 1

(ε−µi)/kB T − 1

ni(ε) =              ,     estadísctica de Fermi–Dirac,            (2.6) e 1

(ε−µi)/kB T + 1

donde k, es la constante de Boltzmann. Debemos recordar que la estadística de Maxwell– Boltzmann es clásica, mientras que las otras dos son cuánticas. La de Bose–Einstein para bosones y la de Fermi–Dirac para fermiones. Estas expresiones suponen que no existe degeneración. Para sistemas degenerados, las debemos multiplicar por una función g(ε), que representa al orden de la degeneración para el caso cuántico y análogamente, el número de partículas diferentes con la misma energía, para el caso clásico. Preferimos mostrar estas expresiones sin la función g(ε), ya que es la tendencia moderna en la literatura. En lo que sigue y teniendo en cuenta que los neutrones y los protones son fermiones, trabajaremos con la estadística de Fermi–Dirac.

Mostramos ahora dos figuras de la función n(ε), empleando un valor arbitrario del potencial químico,                               7 µ y para una temperatura fija . En la Fig. 2.1, mostramos n(ε) para T =5MeV y µ =50MeV. En la misma figura y con línea de rayas, mostramos n(ε) para T → 0. Este último caso lo discutimos enseguida, en esta sección. Vemos que n(ε) ≈ 1, cuando ε < µ; mientras que n(ε) ≈ 0, cuando ε > µ. Para temperaturas finitas, el cambio entre estas dos regiones ocurre en forma suave; mientras que en el

6 Recordemos que subyace el concepto de partícula idéntica y que los bosones son las partículas con

spin entero y los fermiones son aquellas partículas con spin semi–entero.

7 Notamos que la dependencia funcional del número de ocupación debería ser escrito como: n(ε) →

n(ε, µ, T ). Simplificamos la notación usando solo n(ε), pues la temperatura la tomamos como un parámetro y el potencial químico resulta en realidad una variable dependiente de la densidad de número.
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0.0 0              50             100
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Figura 2.1: La función número de ocupación para una temperatura de T = 5MeV. Con línea de puntos, se indica el límite para T → 0. Construimos esta figura para un potencial químico µ =50MeV.

 

límite para T → 0, el cambio es abrupto. La energía en que se produce este cambio, se denomina energía de Fermi, εF . Siguiendo con el vocabulario del tema, decimos que “la temperatura difunde la superficie de Fermi”, para indicar que el efecto de la temperatura sobre el número de ocupación hace que pase de un cambio abrupto, a uno suave. En la Fig. 2.2, sumamos el caso de T = 15MeV. Vemos que la difusión de la superficie de Fermi es aún mayor, incluso hace que n(ε) 6= 1, cuando ε = 0. Lo que extraemos de estas figuras es que cuando T = 0, los niveles cuánticos están ocupados hasta la energía de Fermi. Y están vacíos para energías mayores. Para una temperatura finita, vemos que para cualquier energía la probabilidad de ocupación formalmente nunca vale 0 ó 1. Esto es evidente solo en el entorno a la energía de Fermi para temperaturas bajas; y lo es para cualquier energía a temperaturas altas.

Tomamos ahora la ec. (2.6) y la reescribimos de un modo que nos resulte más con-veniente a los efectos de nuestro cálculo. A partir de este punto, introducimos el campo magnético. Consideramos un campo magnético constante en la dirección del eje–z, esto
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Figura 2.2: La función número de ocupación para dos temperaturas: T = 5MeV y T = 15MeV. El resto de las condiciones son las mismas que las de la Fig. 2.1.

 

es,           ˆ B = B k. Comenzamos con un modelo para la energía de partícula independiente. Pensamos en un neutrón en el campo magnético externo B, sin interacción con otras partículas del medio. Su energía viene dada por,

εn(p, sz) =     − µN Bszgn                      (2.7) 2 p 2 m

donde m es la masa del neutrón, p la magnitud de su cantidad de movimiento, µN y gn son el magnetón nuclear de Bohr y el factor giromagnético del neutrón, respectivamente (ver Apéndice A); finalmente y por conveniencia, s z = ±1, es dos veces la proyección de spin del neutrón. Existe cierta arbitrariedad en la definición de la energía de partícula independiente, para incluir o no, a la masa en reposo. En este caso, elegimos no colocarla.

Teniendo en cuenta la ec. (2.7), reescribimos el número de ocupación para fermiones (ec. 2.6), como,

n n(p, sz) =                      .                      (2.8) e 1 (εn(p, sz)−µn)/k B T + 1

En este punto, es conveniente mostrar la expresión que vincula el número de ocupación
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con la función densidad de número. Esto lo demostramos en el Apéndice B. En esta sección, mostraremos la expresión para el neutrón en presencia de campo magnético, dada por la ec. (B.17), que repetimos por conveniencia:

1   X Z

ρn(µn, T, B) =              dp nn(p, sz).                 (2.9) 3 (2 π ) s z

Haremos un paréntesis antes de seguir, para analizar con cierto detenimiento la función ni(ε), de la ec. (2.6). Energía, potencial químico y temperatura, son variables reales. Luego, el exponencial en el denominador de la ec. (2.6), toma valores dentro del rango,

e(ε−µ )/k iB T ∈ (0, ∞),

por lo tanto,

ni (ε) ∈ [0, 1].

Esto es, el número de ocupación de los fermiones nunca puede ser mayor a uno, ya que representa a fermiones para los que rĳe el Principio de Pauli. Esta cantidad se interpreta como la probabilidad de encontrar una partícula con energía ε; luego, puede tomar cualquier valor dentro de su rango de variación.

Analicemos el límite para la temperatura tendiendo a cero. Vamos a considerar un solo tipo de partículas, por lo que eliminamos el subíndice i. Tenemos,

n(ε) → 1,    si    T → 0 ∧ ε − µ < 0, n(ε) → 0,    si    T → 0 ∧ ε − µ > 0.            (2.10)

En el límite para T = 0, el valor de la energía que cumple con,

ε − µ = 0,

que nos permite definir la energía de Fermi, εF ≡ µ. Notamos que en este límite, el número de ocupación se puede reemplazar por la función escalón θ(x) (θ(x) = 1 si x > 0 y θ(x) = 0 si x < 0; notemos que θ(x) + θ(−x) = 1, ∀ x). Podemos escribir entonces,

n(ε)|T =0 = 1 − θ(ε − εF ) = θ(εF − ε). (2.11)

En el caso de que la partícula solo tenga energía cinética (      2 2 ε = ~ k/2m), definimos el momento de Fermi, como,

~ 2 2 k

F ≡ ε , (2.12)

2       F m
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de esta manera, para T = 0, el número de ocupación lo podemos escribir como,

n(ε)|T =0 = θ(kF − | k |), (2.13)

donde ~k, es la cantidad de movimiento de la partícula.

La expresión para la energía de partícula independiente dada por la ec. (2.7), vale para partículas con masa en reposo no nula y sin carga eléctrica. En presencia de un campo magnético, incluimos perturbativamente el efecto del campo magnético B (último término de esta ecuación), como el resultado del acoplamiento del momento magnético anómalo del neutrón con el campo magnético. Si tenemos un protón debemos proceder de otra manera, ya que el protón tiene carga eléctrica y como toda partícula con carga en movimiento, la misma se acopla con el campo magnético. De este modo, antes de proceder con el estudio de la ecuación de estado, estudiaremos la física de una partícula cargada en un campo magnético constante.

 

2.2. Una partícula cargada en un campo magnético:

niveles de Landau

Para proseguir con el estudio de la ecuación de estado para materia proto–neutrónica en un campo magnético externo intenso B, debemos estudiar primero la física de una partícula cargada en dicho campo magnético. Debemos hacer esto, para conocer la expresión de la energía de partícula independiente que emplearemos en la función número de ocupación. Como hemos discutido extensamente, mientras que en la Mecánica Clásica escribimos la energía de la partícula sin más, en Mecánica Cuántica, la energía resulta de resolver la ecuación de Schrödinger.

Ahora bien, un campo magnético no deriva de un potencial escalar (como el campo eléctrico, por ejemplo). Esto es, en la ecuación de Schrödinger no tenemos un potencial V , que represente al campo magnético. Sin embargo, el campo magnético sí deriva de un potencial vector A (recordemos que, B = ∇ × A). De esta manera, establecimos nuestro objeto de interés: queremos conocer el valor de la energía para un protón en un campo magnético constante. Es importante mencionar que en esta sección emplearemos las unidades de Gauss (ver Apéndice C). Sin embargo, debemos advertir al lector que a
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lo largo de este trabajo empleamos diferentes sistemas de unidades. En cualquier caso, las unidades están claramente indicadas. Empleando el electromagnetismo, proponemos el siguiente Hamiltoniano para nuestro problema,

H ˆ    1      2 e ˆ = p ˆ − A + ˆ V + ˆ V spin,              (2.14) 2 m c

donde ˆ V , es el potencial escalar convencional (si se trata de una partícula libre sabemos que ˆ       ˆ V = 0 y V spin es el operador de interacción entre el momento magnético del protón y el campo B; que modelamos de la siguiente manera,

V ˆ             ˆ ˆ spin = − µ N g p S · B,                     (2.15)

donde µ N y gp, son el magnetón de Bohr y el factor giromagnético para el protón, respec-tivamente (ver Apéndice A). En base a nuestros conocimientos del curso, la ec. (2.14), no nos sorprende. Sin embargo, debemos notar que es una matriz de 2 × 2. Inspirados en la ecuación de Schrödinger,

H ˆ      ∂ψ ψ = i ~ , ∂t

proponemos ahora la ecuación,

"                              # 2 1 e       ∂ψ ˆ ˆ ˆ p ˆ − A + ˆ V − µ N g p S · B ψ = i ~ .         (2.16) 2 m c ∂t

Esta ecuación es un caso particular de la ecuación de Pauli. No ahondaremos sobre este punto. Consideramos ahora un campo magnético         ˆ B = B k, con B = constante; esto es, un campo magnético constante en el sentido del eje–z positivo. El potencial vector correspondiente se escribe como,

A ˆ                ˆ             ˆ x = − B y, A y = 0 , Az = 0,

reescribimos el Hamiltoniano de la ec. (2.16), como,

H ˆ     1        2   2 eB p    2 p y z = p x + y + + − µN gp sz B,        (2.17) 2 m c 2 m 2 m

donde                                                ˆ s z = ± 1 , es dos veces el número cuántico del operador S z . Ya que este Hamilto-niano es independiente del tiempo, podemos plantear la ecuación estacionaria como,

H ˆψ = Eψ,
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de esta manera,

"                                      # 2 2 1 eB p 2 y p z p x + y + + − µ N g p s z B ψ = Eψ.       (2.18) 2 m c 2 m 2 m

Es importante notar que el la única dependencia espacial del Hamiltoniano (ec. 2.17), es con la coordenada–y. De esta manera, px y py son constantes de movimiento. Esto nos induce a reescribir a la función de onda como,

ψ         i (p x+p z) ( x, y, z ) = e Φ(y).                      (2.19) ~   x    z

Antes de reemplazar esta expresión, reescribimos la ec. (2.18), de un modo más conve-

 

niente,                                                                   ! 2 2 p 2 y 1 eB p z ψ + p x + y ψ = E − + µ N g p s z B ψ.      (2.20) 2 m 2 m c 2 m Al reemplazar por la ec. (2.19), el exponencial se simplifica. Además, empleamos la transformación canónica para py = ~∇y/i. De este modo, tenemos,

− ~2                                                   ! 2 2 2 d Φ( y ) 1 eB p z + p x + y Φ( y ) = E − + µ N g p s z B Φ(y), (2.21) 2 m dy 2 2 m c 2 m

luego de un poco de álgebra, podemos escribir,

~ 2    2 dΦ(y)    1

−            2           2 + m ω ˜ ( y − y ) Φ(y) = ˜ E Φ(y),          (2.22) 2m dy2                       0 2

con,

eB

ω ˜ =    ,

y        cpx = mc 0        −     ,

eB

˜          p 2

E        z = E − + µ g s B.              (2.23)

2      N p z m

Recordemos la ecuación de Schrödinger para el oscilador armónico en una dimensión, dada en la ec. (4.2) en [1]. Para el beneficio del lector, repetimos esa ecuación a con-tinuación,

~2   2 d ϕ(x)     1

−           2   2 + m ω x ϕ(x) = E ϕ(x).           (2.24)

2m dx2     2

De la comparación de las ecs. (2.22) y (2.24), concluimos que la ec. (2.22) es la de un oscilador armónico simple, cuyo centro de oscilación está corrido en y0. De nuestro conocimiento del oscilador armónico (ver Cap. 4, en [1]), sabemos que la energía resulta,

E ˜ = ~ω ˜ Np +   ,   con   Np = 0, 1, 2, ...           (2.25) 2      1

Facultad de Cs. Astronómicas y Geofísicas   |  UNLP                                                          50


EDUARDO BAUER

 

Recordando ahora la definición del magnetón nuclear de Born,

e~

µN =    ,

2mc

tenemos, finalmente a partir de las ecs. (2.23) y (2.25),

p2

E                  z = µ B (2 N + 1 − g s ) + ,             (2.26)

N      p       p z    2m

Por conveniencia y para mantener una notación consistente con la sección anterior, cambiamos la notación para la energía E,

p2

ε                z ( p, s , N ) = + µ B (2N + 1 − g s )     N = 0, 1, ...       (2.27)

p      z     p                N         p           p z           p 2 m

Esta es la energía de un protón en un campo magnético constante, que emplearemos en este seminario. Debemos enfatizar que consideramos que la única interacción del protón es con el campo magnético. Si apagamos el campo magnético y nos restringimos a una única partícula, entonces tenemos una partícula libre. Pero escribimos esta sección para muchas partículas que no interactúan entre sí. En física clásica tal sistema se denomina un fluido ideal. En el caso cuántico, rige el Principio de Pauli y seguimos teniendo un potencial químico y números de ocupación; por lo cual hablamos de un “gas de Fermi”.

Antes de terminar, mostramos la expresión para la función de onda. En nuestro cálculo, no necesitamos emplear la función de onda. Sin embargo, debemos responder a una pregunta central: ¿cuál es el grado de degeneración de estos niveles de energía? Para responder a esta pregunta, debemos escribir la función de onda, dada por la ec. (2.19), donde Φ(y) es la solución de la ecuación del oscilador armónico (ec. 2.22). Podemos construir esta solución a partir de la ec. (4.15) en [1]:

s        

ψ(x, y, z) = e ~ (p x+p z)   −    (y−y ) x z i                        eB           2              eB e        0 2 ~ c                       H n ( y − y 0 ) .        (2.28) ~ c

De la comparación con la ec. (2.27), resulta que la energía está degenerada en px, cuyos valores forman una sucesión continua, por lo cual la degeneración es infinita. Sin embargo, la degeneración pasa a ser finita si el movimiento en el plano–(x, y) se limita a un área arbitrariamente grande, pero finita, cuya supeficie designamos como A = L x Ly . Siguiendo el mismo razonamiento que empleamos en el Apéndice B, Sec. B.1, el número
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de valores diferentes de px, es,

número de estados de        Lx p x → ∆px,                (2.29) 2 π ~

donde los posibles valores de px, son aquellos en que el centro de la órbita se encuentra contenida en A. De la condición 0 < y 0 < Ly, recordando que y0 = −cpx/(eB) y reemplazando los valores extremos en la desigualdad,

eBL y

px|min   = −      ,

c

p x|max   = 0,

∆              eBL y p x = p x | max − p x | min = .            (2.30) c

por lo cual, la degeneración g(ε), se obtiene reemplazando ∆px en la ec. (2.29):

eBA

g(ε) = (2.31)

2π~c

Con estos elementos podemos calcular ahora la densidad de número para protones. Esto lo hacemos en el Apéndice B. En forma más específica, la expresión para la densidad de números para protones la mostramos en la ec. (B.14).

Resumamos lo discutido en esta sección. Consideramos una partícula cargada (un protón), en un campo magnético constante, que elegimos en la dirección del eje–z y en el sentido positivo. Encontramos que la partícula muestra una cuantización en el plano– (x, y), pero mantiene su carácter continuo en el eje–z. Este resultado se denomina cuantización de Landau y los niveles discretos de energía se denominan (niveles) de Landau. El estudio de la cuantización de Landau no es el objetivo central de este capítulo. Sin embargo, necesitamos dos resultados: la energía de partícula independiente dada en la ec. (2.27) y la degeneración de los niveles de energía, que mostramos en la ec. (2.31). Estos dos elementos son esenciales para el cálculo de la ecuación de estado en materia proto–neutrónica. El lector interesado en un análisis más cuidadoso de la cuantización de Landau, puede consultar el libro de Landau y Lifshitz [5], §111.
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2.3. Comparación de lo discutido con el átomo de

hidrógeno

Nota: esta sección puede ser ignorada por el lector sin culpa; ya que explicamos un resultado anterior a la luz de lo que aprendimos sobre la cuantización de Landau. El contenido de la sección no aporta ninguna información relevante para el desarrollo de la ecuación de estado, sino que muestra que no existe ninguna inconsistencia entre los resultados anteriores y los nuevos.

En la Sec. 10.1 en [1], mostramos la misma expresión que en la ec. (2.14). Eso lo hicimos para justificar el experimento de Stern y Gerlach, mostrando cómo se acopla el momento angular con un campo magnético, en este caso no–constante. Luego usamos el mismo modelo para dar cuenta del efecto Zeeman en el átomo de hidrógeno. Por otra parte, en la Sec. 12.1 del mismo libro, se discutió la interacción LS; donde dĳimos que por medio del momento angular dábamos cuenta del campo magnético intrínseco del átomo (de hidrógeno). Recordemos que estas correcciones a la energía se hacen sobre el electrón, que es una partícula cargada. Esto es, en esos capítulos estudiamos cómo se modifican los niveles de energía del átomo de hidrógeno debido a la presencia de un campo magnético.

En la sección anterior, demostramos que una partícula cargada en un campo mag-nético constante, muestra una cuantización, denominada de Landau. Volviendo atrás y recordando el estudio del efecto Zeeman o la interacción fina (o interacción LS), debemos preguntarnos si cometimos un error y nos olvidamos de algo importante. La respuesta a esta pregunta se vincula con el método de trabajo científico: la realidad es extremadamente compleja y para tratar de describirla, recurrimos a modelos que son simplificaciones de la realidad. Para el estudio del efecto Zeeman y de la interacción fina, empleamos Teoría de Perturbaciones, donde el espacio de Hilbert es el del átomo de hidrógeno en ausencia de campo magnético. Por lo tanto, los niveles de Landau no aparecen, pues nuestro espacio de Hilbert es el de una partícula en ausencia de campo magnético que no contiene estos estados.

Sabemos entonces por qué no tenemos los niveles de Landau para el efecto Zeeman y la interacción fina. Pero debemos responder aún si ese modelo está bien o no. El mejor modo de responder a esta pregunta, es comparar con el experimento. Al hacerlo, vemos
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que el modelo funciona bien. Dada esta respuesta, nos podríamos preguntar si valió la pena escribir la sección anterior sobre los niveles de Landau. O para ser más claros: ¿en qué condiciones es importante la cuantización de Landau? La respuesta tiene que ver con la intensidad del campo magnético. Cuando analicemos los resultados numéricos para la ecuación de estado, veremos que los efectos magnéticos son relevantes para campos a partir de         15 B & 10G. El campo magnético intrínseco del átomo de hidrógeno es         5 B ∼ 10G y el efecto Zeeman supone un campo magnético menor. A medida que el campo decrece, el número de niveles de Landau que deben ser tenidos en cuenta crece considerablemente. Para valores del campo magnético         5 B ∼ 10G el número de niveles es muy grande y la separación entre niveles muy pequeña. En los hechos, se puede despreciar la cuantificación de Landau en estas condiciones.

En resumen, la importancia de la cuantificación de Landau depende de la intensidad del campo magnético y solo es importante para campos magnéticos muy intensos. Esto lo discutiremos nuevamente cuando analicemos los resultados numéricos de la ecuación de estado. En esta pequeña sección, solo quisimos justificar el motivo por el que no discutimos la cuantificación de Landau para el átomo de hidrógeno. Finalmente, notamos que resolvimos la ecuación de Pauli para una partícula libre que interactúa solo con un campo magnético. No resolvimos la misma ecuación para el átomo de hidrógeno.

 

2.4. Ecuación de estado con un campo magnético

intenso

Como ya dĳimos, el término “ecuación de estado”, indica la presión en función de la densidad; en nuestro caso, la densidad de número. Vamos a desarrollar esta sección según dos niveles de dificultad. En primer lugar, vamos a calcular el potencial químico a partir de la densidad de número. Luego, calcularemos la presión en sí, para lo cual dare-mos un conjunto de expresiones de la Mecánica Estadística, que nos permitirán calcular la ecuación de estado. En este punto, debemos aclarar que la discusión de los resultados busca abordar el comportamiento de cada magnitud física, según la dependencia fun-cional con cada variable de la que dependa dicha magnitud. Esto en una primera lectura, puede resultar algo confuso, ya que damos mucha información. Sugerimos al lector que
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luego de una lectura general, focalice su atención en la magnitud física que resulte de su mayor interés.

Para abordar el problema de un sistema formado solo por neutrones y protones, a temperatura finita y bajo la acción de un campo magnético externo constante; primero debemos establecer claramente qué sabemos y qué deseamos calcular. Esto es, cuáles son nuestros datos de entrada y qué deseamos calcular con ellos.

Nuestros datos de entrada son:

a. La densidad bariónica total ρ y la fracción de protones Yp. Definimos la fracción

de protones como,

ρp

Yp ≡       ,                      (2.32)

ρn + ρp

donde naturalmente ρ = ρn + ρp.

b. La temperatura T , del sistema.

c. La intensidad del campo magnético B.

En resumen, nuestras variables de entrada son cuatro: ρ, Yp , T y B. Debe resultar obvio que podemos dar ρ junto con Yp , o en forma alternativa ρn y ρp, ya que contienen la misma información. Sobre los valores numéricos, analizaremos:

ρ −3 −3  ∈  [  0,0.4  ]  fm  . Notemos que la densidad de saturación nuclear es  ρ  ≈  0.16 fm,

0

de este modo, nos manejamos en un rango ρ/ρ0 ∈ [0,2.5]; ya que densidades may-ores requerirían de un tratamiento relativista.

Consideraremos Yp = 0, 0.15 y 0.30. Lo cual indica materia puramente neutrónica (Yp =0), y fracciones de protones hasta el valor de 0.3, que es un valor de referencia aceptado en la literatura.

Consideraremos temperaturas de T =5 y 15MeV.

Analizaremos       17      18 B =10 y 10G.

El paso siguiente es explicitar el modelo que vamos a adoptar para estudiar nuestro sistema. Pensamos que neutrones y protones no interactúan entre sí, pero sí lo hacen con un campo magnético externo. Como ya discutimos, dadas las condiciones de densidad y temperatura que analizaremos, debemos realizar un tratamiento cuántico del problema.
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Emplearemos el modelo no relativista. Si bien no existe interacción entre las partículas del sistema, la cuántica nos dice que el Principio de Pauli debe ser tenido en cuenta, pues tenemos un sistema de fermiones.

Dado este planteo, podemos calcular un conjunto extenso de propiedades del sistema. La primera magnitud que debemos evaluar es el potencial químico. Una vez que conoz-camos el potencial químico, podremos calcular la ecuación de estado. Pueden calcularse otras magnitudes, como la entropía, polarización del sistema y otras más. Calcularemos solo las magnitudes que hemos nombrado.

B=1017G

100    neutrones

50

 

eV T= 5MeV 0

 

efm-3 ] [ n protones 100

50

0

0.0        0.1        0.2        0.3        0.4-3 [fm ] p

Figura 2.3: Potencial químico en función de la densidad. En el panel superior (inferi-or) mostramos el potencial químico de neutrones (protones). Esto lo hacemos a dos temperaturas.

 

Comencemos entonces por el potencial químico para neutrones y protones. Cada
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tipo de partícula (neutrones, protones, electrones, etc.), posee su potencial químico; que solo depende del tipo de partícula, pero no de su spin, aún en presencia de un campo magnético. Este último punto es sutil y no debe ser subestimado. Para entender este punto y por conveniencia, recordemos las expresiones para la densidad de número para neutrones y protones, ecs. (B.9) y (B.14), respectivamente,

ρn(µ, T, B) =              dk                   ,            (2.33) 3 (2 π ) e ( ε n ( k, s n ) − µ n ) /k B T + 1 s n Z 1   X Z         1 ρp(µ, T, B) =                  dkz                       ,     (2.34) 2 eB   X   ∞           1

(2π)                 (εp( z, sp p)− p)/k −∞ e k ,N µB T + 1 N p , s p

donde ρn +ρp = ρ. Las energías de partícula independiente para neutrón εn(k, sn) y para protón εp(kz , sp, Np), fueron dadas en las ecs. (2.7) y (2.27), respectivamente. Notemos que las energías de partícula independiente dependen de la proyección de spin. Como vimos en la Sec. 2.1, el potencial químico nos dice hasta qué energía tenemos partículas. Si el potencial químico dependiera del spin, tendríamos dos potenciales químicos para la misma especie de partícula. Luego, el sistema no se encontraría en equilibrio, pues para las partículas con el potencial químico mayor, existen niveles de menor energía con otro spin. De este modo, la situación de equilibrio es que el potencial químico no dependa del spin.

Para calcular el potencial químico, fijamos ρn y ρp, y resolvemos las ecs. (2.33) y (2.34), donde las incógnitas son µ n y µp. Estas son ecuaciones implícitas, que deben resolverse en forma numérica. El resultado numérico lo mostramos en las Figs. 2.3. El potencial químico depende fuertemente de la densidad, débilmente de la temperatura y su dependencia con el campo magnético es despreciable. La diferencia entre µn y µp, es también despreciable. Esto último se debe a que la diferencia de masa entre protones y neutrones es muy pequeña y el acoplamiento con el campo magnético es débil.

En las Figs. 2.3, vemos también que la relación entre la densidad y el potencial quími-co es biunívoca: a cada potencial químico le corresponde una única densidad y viceversa. Además, la dependencia funcional es suave. De este modo, podemos simplificar consi-derablemente la evaluación del potencial químico, asignando valores arbitrarios para el mismo, reemplazarlos en las ecs. (2.33) y (2.34), ver a qué valores de la densidad se corresponde y luego hacer una extrapolación lineal para evaluar cualquier valor interme-dio. Como último comentario sobre estas figuras, notamos que para una densidad fija, el potencial químico disminuye cuando la temperatura disminuye. Esto es una consecuencia
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de la difusión de la superficie de Fermi.

Dado el cálculo del potencial químico, somos ahora capaces de evaluar la polarización del sistema. Para ello, evaluamos las densidades de partículas con spin up y down, simplemente como,

1   Z

ρup(µ, T, B) =           dk n(k, s n                                n = +1),                   (2.35)

(2π)3

1    Z

ρdw(µ, T, B) =           dk n(k, s n                                 n = −1),                  (2.36)

(2π)3

up                  eB X Z ∞

ρ (µ, T, B) =                dk n k , s = +1    ), p z ( z p , N p        (2.37) (2 π ) 2 −∞ N p

dw                eB X Z ∞

ρ (µ, T, B) =                dk pz n(kz, sp = −1, Np).        (2.38) (2 π ) 2 −∞ N p

donde el superíndice up, indica partículas con spin up y dw, aquellas con spin down. Notar que       up     dw          up     dw ρ = ρ + ρ y ρ = ρ + ρ. En ausencia de campo magnético y por el

n     n     n     p     p      p

principio de Pauli, tendremos,

ρup     dw = ρ,   cuando   B = 0,                     (2.39)

donde por simplicidad omitimos la dependencia funcional de la densidad. Este resulta-do es válido tanto para protones, como para neutrones. Sin embargo, la presencia del campo magnético altera esta igualdad, generando una asimetría (de spin) entre las den-sidades parciales de spin up y down. Por conveniencia, definimos la asimetría en forma adimensional, de la siguiente mantera,

Asimetría =         ,                     (2.40) up dw ρ ρ up     dw − ρ + ρ

donde nuevamente la expresión es válida tanto para neutrones, como para protones, en forma independiente. De esta manera, tenemos dos asimetrías de spin; una para cada tipo de partícula interviniente en nuestro estudio. Esta expresión es válida para cualquier valor de campo magnético. En particular y de la ec. (2.39), notamos que en ausencia de campo magnético la asimetría vale cero. A partir de su definición, vemos que la asimetría de spin posee valores acotados entre −1 y +1. El valor −1 indica que todas las partículas tienen spin down. Análogamente, para +1 el spin es up y como mencionamos, el valor cero muestra materia no polarizada. Por inspección del signo del factor giromagnético para protones y neutrones, vemos que el valor de la energía de
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partícula independiente es más bajo para spin down en el caso de neutrones y spin up para protones. Por otra parte, el Principio de Pauli, nos dice que la situación de menor energía es aquella en que el número de partículas con spin up y down es el mismo. La situación física real es aquella en que la polarización es parcial. Debemos indicar que para bajas densidades y campos magnéticos muy grandes, es posible que el sistema se encuentre completamente polarizado. Vale la pena mencionar que entre las diferentes magnitudes

Y =0.3, T=5MeV p

1.0

protones

neutrones

0.5

etr                                                                                                                        0.0 íaim

As

-0.5                         18 B= 10G

 

-1.0 0.0       0.1       0.2       0.3       0.4

 [fm-3]

Figura 2.4: Asimetría de spin para protones y neutrones en función de la densidad total, para dos valores del campo magnético B . Empleamos una temperatura de T = 5MeV.

 

físicas que evaluaremos, aquella con mayor dependencia con el campo magnético es la asimetría de spin. En la Fig. 2.4, mostramos el comportamiento de dicha magnitud para dos valores del campo magnético. Vemos que la asimetría es positiva para protones y negativa para neutrones, como ya habíamos advertido. La magnitud de la asimetría es mayor a bajas densidades. Intuitivamente, esto es fácil de entender: el grado de polarización resulta de la competencia entre el campo magnético que busca polarizar el sistema y el Principio de Pauli que favorece lo contrario. Cuando la densidad es baja, las partículas están más separadas y por lo tanto el Principio de Pauli es menos efectivo. Luego, predomina la polarización.
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Siguiendo con la Fig. 2.4, notamos que la asimetría para protones posee una magnitud mayor que la de neutrones. Existen dos razones para esto: en primer lugar, el módulo del factor giromagnético para protones es mayor. En segundo lugar, tenemos Y p =0.3, lo cual indica que la densidad parcial de protones es menor que la de neutrones. Finalmente, notamos que al pasar de        17             18 B = 10 G a B = 10G, la asimetría crece en aproximadamente un orden de magnitud; lo cual muestra la fuerte dependencia de la asimetría con el campo magnético.

B=1018G, Y =0.3 p
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-1.0 0.0       0.1       0.2       0.3       0.4

 [fm-3]

Figura 2.5: Asimetría de spin para protones y neutrones en función de la densidad total, para diferentes valores de la temperatura. En esta figura elegimos         18 B = 10G y Y =0.3.

p

 

En segundo lugar, en la Fig. 2.5, mostramos la dependencia de la asimetría con la temperatura. Elegimos dos temperaturas: T = 5 y 15MeV. Vemos que la asimetría disminuye cuando aumenta la temperatura: un aumento de la temperatura produce un incremento en el desorden térmico. El estado polarizado, es un estado ordenado, pues los espines se alinean en la misma dirección. La temperatura, naturalmente, tiende a desordenar al sistema.

Finalmente en el análisis de la asimetría, en la Fig. 2.6, mostramos las asimetrías para neutrones y protones para diferentes valores de la fracción de protones. En el
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B=1018G, T=5MeV
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Figura 2.6: Asimetría de spin para protones y neutrones en función de la densidad total, para diferentes valores de la fracción de protones, 18  Y  . En esta figura elegimos  B  = 10G

p

y T = 5MeV.

 

panel superior, mostramos el caso Yp = 0, esto es, materia puramente neutrónica, pues no hay protones. En los siguientes paneles, mostramos Yp =0.15 y 0.30. Vemos que la dependencia con la fracción de protones es débil. En resumen, tenemos que la asimetría es una magnitud positiva para protones y negativa para neutrones; que depende fuertemente del campo magnético y de la temperatura. Debe resultar evidente la relación entre la asimetría y la magnetización del sistema. Sin embargo, en este capítulo no avanzaremos en esa dirección.

Pasamos ahora a la segunda parte de nuestro análisis, para lo cual debemos mostrar un conjunto de expresiones que nos permitirán calcular la presión. Esta función depende de: la densidad, la fracción de protones, la temperatura y el campo magnético. Partimos de la expresión para el potencial de Helmholtz F dado por la ec. (2.1). Vamos a dividir
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por el volumen V , de modo que trabajaremos con densidades de energía, esto es,

F

F ≡ .

V

El motivo por el cual dividimos por el volumen es que nuestro sistema (una estrella de neutrones), es desde el punto de vista de nuestro modelo, un sistema muy grande. Dentro de la estrella, tenemos distintos valores para la densidad (dependiendo de la distancia al centro), diferentes temperaturas y valores del campo magnético. Luego, es conveniente analizar un subsistema, cuyo volumen arbitrario es V , donde estas cantidades son localmente constantes. Todos nuestros resultados van a ser independientes de V ; por lo cual, podemos pensar a este volumen como un artificio para el cálculo. Aún así, podemos decir que el volumen debe ser lo suficientemente pequeño para que densidad, temperatura y campo sean aproximadamente constantes; y lo suficientemente grande como para que el número de partículas admita un tratamiento termodinámico. Siguiendo con nuestro análisis, separamos ahora la contribución para neutrones, de la de protones,

F = Fn + Fp, (2.41)

con,

Fn = En − T Sn, (2.42)

Fp = Ep − T Sp, (2.43)

donde Ei ≡ Ui/V y Si ≡ Si/V , son las densidades de energía interna y de entropía para i = n, p, respectivamente. A partir del conocimiento de los potenciales químicos para neutrón y protón, podemos evaluar el potencial de Helmholtz por unidad de volumen. Mostramos ahora las expresiones explícitas para dicho cálculo. En primer lugar, para neutrones, tenemos,

En = Kn − µN BgnWn, (2.44)

 

Wn   n                                   n, s    n 3 µ , T, B ) = d k k ρ ( µ, T, B),       (2.45) 2 m n (2 π ) n s n Z 1 X ( n µ n , T, B ) = s n d k ρ n, s n ( µ n , T, B ) , (2.46) (2 K          1        X Z 1    2 ( donde,

π)3 sn 1   Z             1

ρn, sn(µn, T, B) =           dk                     .            (2.47) 3 (2 π ) e ( ε n ( k, s n ) − µ n ) /k B T + 1
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Mientras que para protones las expresiones correspondientes son,

Ep   = Kp + (2Lp + ρp − µN BgpWp) ,               (2.48)

donde,

K          1    eB   X Z ∞     2 p ( µ p , T, B ) = d k z k ρ      µ, T, B , z p, s 2 m p p (2 π ) 2 p , N ( ) (2.49) −∞ s p , N p

Wp(µp, T, B) =            sn     dkz ρp, sp, Np(µ, T, B),       (2.50) 2 (2 π ) −∞ s eB   X Z ∞ p , Np

eB   X Z ∞

Lp(µp, T, B) =             Np     dkz ρp, sp, Np(µ, T, B),       (2.51) 2 (2 π ) −∞ s p , N p

ρ                    eB Z ∞             1 ( p, s p , N p µ p , T, B ) = d k z           .       (2.52) (2 π ) 2 ε p ( k z , s , N −∞ e ( p p ) − µ p ) /k B T + 1

Obviamente, tenemos,

B=1017G, Y =0.3

p
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Figura 2.7: Densidad de entropía en función de la densidad para dos temperaturas.

 

X

ρn   =   ρn(µn, T, B) =     ρn, sn (µn, T, B).                (2.53)

sn

X

ρp   =   ρp (µp, T, B) =       ρp, sp, Np(µp, T, B).            (2.54)

sp, Np
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Para la densidad de entropía, tenemos,

 

Sn(µn, T, B) = −            dk [ρn, s ln ρn, s + (1 − ρn, s ) ln(1 − ρn, s ) ] , (2 π ) 3 n n n n s n Z 1    X Z

S p (µp, T, B) = −               dkz[ρp, s , N    ρ    , N + (2 eB   X ∞ π)2                    p   p     p, s ln −∞             p   p

sn, Np

(1 − ρp, sp, Np) ln(1 − ρp, sp, Np) ]. (2.55)

Finalmente, la presión resulta,

Pn(µn, T, B) = µnρn − Fn, (2.56)

P p(µn, T, B) = µp ρp − Fp, (2.57)

donde la presión total (o ecuación de estado), es la suma de las presiones parciales de neutrón y protón,

P (µn, T, B) = Pn(µn, T, B) + Pn(µn, T, B). (2.58)

Como advertimos, este esquema es complejo y fue expuesto sin una demostración rigu-rosa. Referimos al lector interesado a los libros de Callen [6] y Pathria [7], para ver el desarrollo y demostración de estas expresiones. Aceptandas las mismas, es simple evalu-ar la presión; una vez conocido el potencial químico para cada partícula. Hagamos una síntesis del desarrollo. Tenemos un sistema formado por neutrones y protones a temper-atura finita, con un campo magnético intenso. Sobre el sistema, conocemos la densidad de número, la fracción de protones, la temperatura y el campo magnético. Deseamos calcular la ecuación de estado. Para ello calculamos en primer lugar los potenciales quími-cos para neutrón y protón, µ n y µp, respectivamente. Obtenemos µn y µp, a partir de la densidad de número para neutrón y protón. Si bien no lo demostramos, los valores de µn y µp, así obtenidos resultan en el mínimo del potencial termodinámico. Luego, en las ecs. (2.41)-(2.58), mostramos que con el conocimiento de los potenciales químicos, podemos calcular la ecuación de estado.

Antes de mostrar los resultados para la presión, daremos los valores para la densidad de entropía. Esto lo vemos en las Figs. 2.7 y 2.8. La densidad de entropía es una magnitud de interés desde el punto de vista astrofísico. En la Fig. 2.7, mostramos la densidad de entropía para dos valores de la temperatura. Vemos que la entropía es menor, cuando la temperatura es más baja. Un sistema más frío, es más ordenado y por lo tanto

Facultad de Cs. Astronómicas y Geofísicas   |  UNLP                                                          64


EDUARDO BAUER

 

B=1018G, T=15MeV

0.3

 

-3                                                                                                              ]                                                                                                                                                      0.2

 

[fmp Y = 0.15 p Y = 0.30 p

0.0 0.0       0.1       0.2       0.3       0.4

 [fm-3]

Figura 2.8: Densidad de entropía en función de la densidad para diferentes valores de la densidad de protones.

 

su entropía es menor. Luego, en la Fig. 2.8, mostramos la densidad de entropía para diferentes fracciones de protones. A altas densidades, claramente la materia neutrónica se muestra como un sistema más ordenado.

Finalmente, en las Figs. 2.9 y 2.10, mostramos la presión en función de la densidad. Vale la pena señalar que, al igual que para la densidad de entropía, la presión es casi independiente del valor del campo magnético. Esto se debe a que en la expresión de la presión los términos que dependen del campo magnético son muy pequeños respecto del resto de los términos. En sentido estricto, existe una dependencia de estas magnitudes con el campo magnético; pero tal dependencia es despreciable. Debido a ello, no hemos incluido ninguna figura mostrando a la presión en función del campo magnético.

En la Fig. 2.9, mostramos la presión para dos valores de la temperatura. Vemos una débil dependencia con la temperatura; cuando la temperatura aumenta, la presión se incrementa. Por otra parte, en la Fig. 2.10, mostramos la presión para diferentes valores de la fracción de protones. Vemos que a medida que la fracción de protones disminuye, la presión aumenta. Esto es un reflejo del principio de exclusión de Pauli:

 

Facultad de Cs. Astronómicas y Geofísicas   |  UNLP                                                          65


EDUARDO BAUER

 

B=1017G, Y =0.3 p

15

eV T= 5MeV

3                                                                                                                                                                                                                                                          10 /fm

[M                                                                                                                                                                                                                            5 P eV

 

0 0.0      0.1       0.2       0.3       0.4

 [fm-3]

Figura 2.9: Presión en función de la densidad para dos temperaturas diferentes.

 

cuando las partículas son idénticas, el último nivel ocupado es de una energía mayor al caso en que tengamos partículas de diferente tipo. Seamos más explícitos por medio de un ejemplo. Supongamos que tenemos un total de diez partículas. Si son todos neutrones, irán ocupando los niveles cuánticos hasta agotar las partículas. Si se trata de cinco protones y cinco neutrones, está claro que el último nivel ocupado por los neutrones es menor que aquel en que tenemos solo neutrones. Por otra parte, los protones comienzan a ocupar sus niveles cuánticos comenzando por el estado fundamental. Luego, intuimos que cuando tenemos partículas de diferentes clases, podemos “comprimir” más a las partículas; por lo cual su presión es menor.

 

2.5.    Discusión y conclusiones

Durante este capítulo, desarrollamos una ecuación de estado para un sistema de neutrones y protones no interactuantes entre sí, a temperatura finita y con un campo magnético intenso. Para ello, debimos desarrollar la física de una partícula cargada en un
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Figura 2.10: Presión en función de la densidad para diferentes valores de la densidad de protones.

 

campo magnético, que da origen a los llamados niveles de Landau. Introdujimos y desa-rrollamos el concepto de potencial químico, que da cuenta de propiedades estadísticas de partículas, en nuestro caso de fermiones. Mostramos un conjunto de expresiones de la termodinámica para poder calcular la ecuación de estado. Encontramos que la ecuación de estado tiene una dependencia despreciable con el campo magnético, pero sí depende de la temperatura y de la fracción de protones. Sin embargo, el campo magnético puede producir una fuerte polarización del medio, haciendo que los espines de los nucleones se alineen en forma total o parcial. Concluimos entonces, que la ecuación de estado no diferencia el estado de polarización de las partículas. En lo que sigue, discutiremos una posible aplicación de la ecuación de estado.

Supongamos un problema astrofísico de interés: ¿cómo se enfría una estrella luego de su colapso? Sabemos que el mecanismo más efectivo de enfriamiento es por medio de la emisión de neutrinos. Luego, si deseamos estudiar el enfriamiento del remanente estelar de una estrella masiva, debemos conocer el camino libre medio de los neutrinos en ese medio. De este modo, logramos refinar un poco nuestra pregunta inicial. Debemos

 

Facultad de Cs. Astronómicas y Geofísicas   |  UNLP                                                          67


EDUARDO BAUER

 

preguntarnos: ¿cómo calcular el camino libre medio de neutrinos en un medio estelar? La respuesta a esta pregunta es simple (como todo, su implementación es más compleja), y consiste en identificar con cuáles partículas del medio interactúa el neutrino, analizar las posibles reacciones y calcular su sección eficaz. La inversa de la sección eficaz, es el camino libre medio del neutrino.

Realicemos una síntesis del párrafo anterior: debemos calcular la sección eficaz entre dos partículas: el neutrino y una de las partículas del medio estelar (neutrones, protones, núcleos, etc). Llegamos a nuestro punto de interés: esa sección eficaz, ¿depende de que la partícula con la que interactúa el neutrino, sea libre o esté en un medio rodeada de otras partículas? La respuesta es que sí depende de que se encuentre rodeada de otras partículas. Para entender este punto, mostremos un ejemplo. Supongamos la reacción de dispersión inelástica de un neutrino con un neutrón. Como producto de la reacción, el neutrón cambia su estado cuántico. Si se trata de un neutrón libre, puede acceder a cualquier estado cuántico como estado final. Pero si está rodeado de otros neutrones, el Principio de Pauli nos dice que el neutrón no podrá acceder a los estados cuánticos ya ocupados por otros neutrones. Luego, la sección eficaz va a ser diferente entre neutrones libres y neutrones en un medio que contiene otros neutrones. Un cálculo de este tipo para materia neutrónica, se puede encontrar en [8].

De acuerdo entonces, la sección eficaz depende de las propiedades del medio. Y para saber cuáles son las “propiedades del medio”, debemos evaluar la ecuación de estado, que es el objeto de estudio de este capítulo. Acabamos de describir sólo una de las posibles motivaciones para estudiar la ecuación de estado de un medio estelar. En la literatura, encontramos trabajos que se concentran en el desarrollo de ecuaciones de estado como un fin en sí mismo. Una vez que tenemos una ecuación de estado para una estrella de neutrones, por ejemplo; podemos calcular su radio y masa, que son observables (desde el punto de vista astronómico, no cuántico). No desarrollaremos este punto.

El modelo que hemos expuesto es simple. Puede serlo aún más. Podemos tomar solo neutrones a temperatura cero. Es un ejercicio de interés, no del todo trivial, que dejamos al lector interesado. Pensemos en cuáles son las líneas de trabajo para mejorar este modelo. En primer lugar, deberíamos incluir al menos a los electrones: cualquier estrella es eléctricamente neutra, luego el modelo de materia formada solo por protones y neutrones es poco realista. Al incluir electrones, debemos pedir que el sistema se
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encuentre en equilibrio beta. Otra línea de trabajo, es el incluir interacciones entre las partículas. Otro punto que debe ser revisado son los efectos relativistas. El número de sofisticaciones al problema es muy grande y cada elemento que se agrega produce una modificación perceptible en la ecuación de estado. Esto es de particular interés, pues nos dice que se trata de un problema abierto.
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Capítulo 3

 

 

Oscilaciones de neutrinos

 

Introducción

La importancia de los neutrinos en el ámbito astrofísico es enorme. La lista de situa-ciones en las que los neutrinos juegan un papel importante es muy larga. Solo por nombrar dos de ellas, digamos que son centrales en la física de las supernovas, en el enfriamiento de objetos compactos, e infinidad de fenómenos más. Con todo y ello, los neutrinos son unas de las partículas más elusivas de la naturaleza. Sobre su elusividad, vale la pena mencionar su modo de detección. Los detectores de neutrinos consisten en grandes volúmenes de agua, construidos debajo de la superficie de la tierra o en algún túnel debajo de una montaña. De este modo, la roca que rodea al agua evita la llegada de cualquier otra radiación que no sean los neutrinos. Dentro del recipiente de agua se colocan fotomultiplicadores: cuando un neutrino interactúa con el agua, se emite ra-diación que el fotomultiplicador puede medir. La pregunta que debemos hacernos es: ¿cuán probable es que un neutrino interactúe con el agua? Para responder a ello, pode-mos calcular el camino libre medio de un neutrino en el agua; esto es, la distancia entre dos 9  interacciones  sucesivas  del  neutrino  con  el  agua.  El  camino  libre  medio  resulta  10

veces el radio del Sol. Quien lee estas líneas puede ser escéptico respecto de la posibilidad real de medición de los neutrinos. Si bien la interacción de un neutrino es muy débil, el número de neutrinos que se emiten en cualquier estrella es enorme, lo cual permite
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finalmente obtener mediciones8.

Enseguida haremos una descripción más detallada de los neutrinos en sí. Antes de ello, nos adelantamos a decir que existen diferentes tipos de neutrinos. Los que se forman en una estrella como el Sol, son de un tipo particular, que en forma algo arbitraria, denominaremos “neutrinos solares”. Los neutrinos solares se originan en el núcleo del Sol, llegan a la Tierra y son medidos. Dada la luminosidad del Sol, se espera un cierto valor para la cantidad de neutrinos solares. Al realizar esta medida, el resultado obtenido se encuentra entre la mitad y un tercio del valor esperado. Esta discrepancia, se denomina “problema de los neutrinos solares” y fue resuelto a comienzos del presente siglo. Como dĳimos, existen diferentes tipos de neutrinos. Si bien en el Sol se emiten neutrinos solares, luego estos mismos neutrinos pueden cambiar su tipo en su viaje a la Tierra. De hecho, no se trata de un solo cambio, sino de una oscilación entre los diferentes tipos de neutrinos. La oscilación de neutrinos es el objeto de estudio de este seminario y tiene implicancias físicas interesantes; como por ejemplo el hecho de que para que se produzca la oscilación de neutrinos, al menos algunos de sus tipos deben tener masa en reposo no nula. Esto último choca con el Modelo Estándar. De esta manera, tenemos un ejemplo de cómo un hecho observacional modifica una teoría que es ampliamente aceptada. Los elementos generales del tema pueden encontrarse en [9].

 

3.1. Algunos elementos de la fenomenología de neu-

trinos

En primer lugar, la notación aceptada para el neutrino está dada por la letra gri-ega ν, mientras que el antineutrino se escribe como ν ¯; aunque no discutiremos a los antineutrinos. Desde el punto de vista estadístico, el neutrino es un fermión, ya que su spin vale 1/2. Desde el punto de vista eléctrico, es neutro, esto es, no tiene carga eléctrica (debimos imaginar esto a partir de su nombre). Además, desde el punto de vista de las interacciones, el neutrino no es afectado por la interacción fuerte, solo lo es por la interacción débil y por la gravitatoria. La masa del neutrino es extremadamente

8                                                                                     10 Se estima que el número de neutrinos que incide sobre la Tierra es de 6,5 × 10 neutrinos por

segundo, por centímetro cuadrado.
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pequeña. De hecho, durante mucho tiempo se supuso que era una partícula sin masa en reposo, como el fotón. Naturalmente, dado el pequeño valor de su masa, la atracción gravitatoria que experimenta es muy baja. De este modo, consideraremos que el neutrino interactúa con otras partículas solo por medio de la interacción débil. Esta interacción, además de ser débil comparada con la interacción nuclear, es también de corto alcance. En la clasificación de partículas, el neutrino es un leptón.

En este punto, vale la pena recordar cómo se introdujo el spin a partir del experimento de Stern y Gerlach: el resultado experimental no podía ser interpretado por medio de los observables que se conocían y se debió introducir un observable nuevo, el spin. En forma análoga, los neutrinos requieren de un número cuántico nuevo, denominado ’sabor’. Aún no sabemos el número total de sabores de los neutrinos, pero sí podemos afirmar que existen al menos tres. Estos son,

neutrino electrónico, ν e,

neutrino muónico, ν µ,

neutrino tauónico, ν τ .

Los antes denominados neutrinos solares, son en realidad los neutrinos electrónicos, νe. Si el neutrino se encuentra en un autoestado de sabor, su función de onda es |ν ei, |νµi o |ν τ i, dependiendo del sabor del neutrino. Ahora bien, los autoestados de energía no son autoestados de sabor. Naturalmente los autoestados de sabor y de energía, forman dos bases diferentes del mismo espacio de Hilbert. Luego, debemos tener tres autoestados de energía. Para estudiar la evolución temporal de cualquier estado físico, debemos escribir al estado como una combinación lineal de autoestados de energía, pues el operador de evolución temporal está asociado con la energía (ver por ejemplo la Sec. 5.3 en [1]). Cuando tenemos un estado puro, esto es, aquel que tiene un valor definido de la energía, la parte espacial del estado no cambia con el tiempo. Pero por hipótesis, un autoestado de sabor, no lo puede ser de energía; por lo tanto, un autoestado de sabor debe ser una combinación lineal de autoestados de energía en un instante dado.

Lo que estamos describiendo es un hecho fenomenológico y es la clave para com-prender el fenómeno de la oscilación de neutrinos. Dados los tres estados de sabor, |νei, |ν µi y |ντ i, en el instante inicial éstos se puede escribir como una combinación lineal de autoestados de energía, que escribiremos como |ν1i, |ν2i y |ν3i; donde cada uno de
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estos autoestdos tiene una energía Ei, diferente. Para estudiar la evolución temporal de |ν ei, |νµi y |ντ i, debemos multiplicar a los autoestados de energía por el coeficiente de evolución temporal,

|            − i E t ν i → e |ν i,     con i = 1, 2, 3.

i              ~ i      i

Insistamos en este punto: cada uno de los autoestados de sabor, |ν ei, |νµi y |ντ i; se puede escribir como una única combinación lineal de autoestados de energía. Supong-amos que tenemos el autoestado de sabor |νei en t = 0. Debido a la evolución temporal, los coeficientes que multiplican a |ν1i, |ν2i y |ν3i, alteran el peso relativo de las com-ponentes, justo después de t = 0, pasamos del autoestado de sabor |ν ei a un estado mezcla de sabor. Si medimos el sabor para t 6= 0, podremos obtener cualquiera de los tres sabores de neutrinos, con una cierta probabilidad. Este es el objeto de estudio de este seminario.

 

3.2.    Un sistema con dos sabores de neutrinos

Como discutimos en la Sec. 3.1, sabemos que existen al menos tres sabores diferentes de neutrinos. El objetivo de este seminario, es estudiar las oscilaciones entre los tres sabor de los neutrinos, lo cual es algo complejo. Con el fin de desarrollar una comprensión conceptual del fenómeno, en esta sección discutiremos un sistema simplificado, formado solo por dos sabores de neutrinos. Esto nos permitirá comprender el objetivo del cálculo, de modo de acceder al sistema realista de tres sabores con una mayor claridad sobre el método.

Vamos a considerar dos estados de sabor, |ν ei y |νµi. Como ya hemos discutido, los autoestados de sabor no son autoestados del Hamiltoniano del sistema; esto es, no son autoestados de energía. Llamemos |ν1i y |ν2 i, a los autoestados de energía. Podemos vincular ambas bases por medio de una transformación unitaria U , dada por,

          

U    cos θ    sen θ  =   .                    (3.1)

−sen θ   cos θ

De este modo, podemos escribir,

                   |ν i                   sen e cos θ θ       |ν1 i        =     .                (3.2)

|νµi        −sen θ    cos θ      |ν2i
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En forma más explícita,

|νei   =    cos θ |ν1i + sen θ |ν2i                      (3.3) |ν µi   = −sen θ |ν1i + cos θ |ν2i.                    (3.4)

Mientras que la transformación inversa es simplemente,

          

U −      cos θ −sen θ 1   =   .                   (3.5)

sen θ    cos θ

Analicemos ahora la evolución temporal de los estados. Para los estados |ν1i y |ν2i eso es trivial y viene dado por,

|                     − i E t ν 1                    1 ( t ) i = e|ν (0)i ~       1

|                     − i E t ν 2                    2 ( t ) i = e|ν (0)i,                              (3.6) ~       2

donde E1 y E2 son los valores de la energía. Pensando en que los neutrinos no están interactuando con otras partículas, sus energías vienen dadas por,

q

E      2         2 4 1 = p c 2 + m c 1 1

q

E      2 2 2 = p c    2 + m c4,                    (3.7) 2 2

donde pi y mi i = 1 ó 2, es la magnitud del impulso y la masa del neutrino i, respecti-vamente. Haremos ahora algunas aproximaciones para simplificar el problema. En primer lugar, supondremos que,

p ∼ 1 = p2 = p,

donde esta aproximación nos dice que el módulo del impulso es el mismo para todos los neutrinos. Claro, los neutrinos se mueven en todas las direcciones y por lo tanto el impulso, como vector, difiere de un neutrino al otro. Por otra parte, estamos suponiendo que los neutrinos poseen una masa en reposo no nula; pero la evidencia experimental nos indica que en el caso de ser no nula, es muy pequeña. No sabemos los posibles valores para las masas, pero sí conocemos una cota superior para las mismas, cuyo valor es de 1eV. Dado su valor, es también una aproximación razonable el que los neutrinos se muevan a una velocidad próxima a la velocidad de la luz. Luego, podemos concluir que es una buena aproximación el suponer que    ∼ p 1 = p2 = p.
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Este mismo razonamiento nos permite hacer una aproximación sobre las energías (ecs. 3.7): empleamos la aproximación que se denomina “ultrarelativista”, que consiste en pensar que el término del impulso es mucho mayor que el de masa. De este modo, tenemos,

E    q             2 4 1 m c 2 2 2 4 ∼ 1 1 = p c + m c pc + 1 1 = 2 pc

E    q             2 4 1 m c 2 2 2 ∼ 2 2 = p c + m c 4 pc + 2 2 = .            (3.8) 2 pc

Dentro de esta aproximación y por conveniencia, mostramos ahora la expresión para la diferencia de energías,

1    2       2   4 ( m − m ) c

E          2       1 − E =   .                  (3.9)

2      1      2        pc

En este punto, vale la pena detenerse un poco para recordar cuál es el objetivo de nuestro cálculo. Lo que sabemos es que para los neutrinos, sus autoestados de sabor no son autoestados de energía. De modo que la idea es partir en el instante inicial de un autoestado de sabor y transcurrido un cierto intervalo de tiempo, ver cuál es la probabilidad de que se encuentre en otro estado de sabor. Para ello, comenzamos expresando los autoestados de sabor en función de los de energía, ya que de estos últimos sabemos calcular su evolución temporal. Colocando en forma explícita la dependencia temporal en las ecs. (3.3,3.4), tenemos,

|                              − i                                          i E t − E | ν ν e                                                     ~ ( t ) i = cos θ e (0) i + sen θ e    |ν (0)i            (3.10) ~ 1                                  2 t 1                            2

|                               − i                                          i E − ν µ                   ~ 1 t                              E t 2 ~ ( t ) i = − sen θ e | ν (0) i + cos θ e |ν (0)i.           (3.11)

1                            2

Supongamos que en t = 0, el neutrino se encuentra en el autoestado de sabor electrónico, |ν e(0)i, y queremos calcular la probabilidad de que al tiempo t, el neutrino se encuentre en un estado de sabor muónico. Esta probabilidad viene dada por,

P            2 = |h ν | ν ( t ) i| .                    (3.12)

e→µ      µ e

Aunque debe resultar obvio, tomamos la expresión del estado del neutrino electrónico de la ec. (3.10); mientras que para el neutrino muónico empleamos la ec. (3.4): las expre-siones dadas en las ecs. (3.3, 3.4), representan estados puros de sabor. Naturalmente, para t = 0 las ecs. (3.10, 3.11) se reducen a las ecs. (3.3, 3.4). Para t 6= 0, la evolución temporal de los estados de neutrino hace que ya no sea un estado puro de sabor. Por
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Figura 3.1: Sistema de dos niveles. La línea azul representa la probabilidad de tener un neutrino electrónico, mientras que la línea negra corresponde a un neutríno muónico. Naturalmente la suma de ámbas curvas vale uno para cualquier posición.

 

ello, P e→µ 6= 0. La evaluación de la ec. (3.12), es simple. Pensamos también que la velocidad del neutrino es próxima a la velocidad de la luz; por lo cual podemos vincular el tiempo con la distancia L, que es la distancia entre el punto de emisión del neutrino hasta el punto en que medimos su estado de sabor. De este modo, tenemos,

t ∼ L = . c

Empleando las ecs. (3.10,3.11), obtenemos,

P       2                (   2              ! 2 4 m − m ) c L 2 2 1 e → µ = sen (2 θ ) sen .                (3.13) 4 E ~ c

Para llegar a este resultado, debimos emplear las siguientes propiedades:

1

sen(θ) cos(θ) =    sen(2θ),

2

junto con,

eix      −ix − e

sen(x) =          .

2i
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En la ec. (3.13), hicimos la sustitución E = pc. Esta es la expresión para la energía del neutrino en el caso de que este no tenga masa. Debemos pensar a este “E”, simplemente como una notación, por cuestiones de tradición. Por otra parte, por conservación de las probabilidades, la probabilidad de permanencia en el mismo estado resulta,

P                 2                (   2              ! 2 4 m − m ) c L 2 2 1 e → e = 1 − P e → µ = 1 − sen (2 θ ) sen .       (3.14) 4 E ~ c

Finalmente, es fácil comprobar que,

Pµ→e = Pe→µ,

y que,

Pµ→µ = Pe→e.

En la Fig. 3.1, mostramos la forma en que oscilan estas probabilidades.

 

3.3.    Un sistema con tres sabores de neutrinos

En la sección anterior discutimos un sistema formado por dos sabores de neutrinos con fines puramente didácticos, pues la situación realista es la de tres sabores de neutrinos. Se especula con la existencia de otros tipos de neutrinos denominados estériles, pues no intervienen en las oscilaciones de los mismos; por lo cual no son de interés para este seminario. De esta manera, dado el presente estado de conocimiento del tema, esta sección representa a la situación más general de la misma.

3.3.1. Consideraciones generales sobre la matriz de transforma-

ción

Para evaluar la probabilidad de transición entre los diferentes estados de sabor del neutrino, procedemos de una manera muy similar a la que discutimos para el caso del sistema de dos sabores. Debemos construir una matriz unitaria que vincule los autoes-tados de sabor con los de energía, en forma análoga a la ec. (3.1), solo que ahora la matriz es de 3 × 3:                                

U    u1,e   u2,e    u3,e      = u .                     (3.15)  1 ,µ u 2 ,µ u 3 ,µ   

u1,τ   u2,τ    u3,τ
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Daremos enseguida la expresión explícita para esta matriz. Antes de ello, debemos mostrar el modo en que vincula a los autoestados de energía con los de sabor,

X 3

|ναi =    ui,α |νii,                            (3.16)

i=1

con α = e, µ ó τ . En lo que sigue, adoptaremos las siguientes convenciones: emplearemos letras griegas como índice de suma para los estados de sabor y números para los estados de energía. Emplearemos la letra “U” mayúscula para la matriz unitaria que vincula los autoestados de energía con los de sabor y “ui,α” minúscula para los elementos de matriz de la matriz “                                          ∗ U ”; mientras que designaremos como “ u ”, a los elementos de la matriz

i,α

inversa “ −1                          −1         −1 U ”, que resulta de resolver U U = UU = I. Debemos notar que ya que se trata de una matriz unitaria, tenemos,

U −1     † = U,                           (3.17)

lo cual es inmediato a partir de la expresión (5.39) en [1]. Esta relación es importante, pues la matriz adjunta   † U se calcula como la matriz conjugada y transpuesta de U . Luego, si conocemos U , el cálculo de su matriz inversa es muy simple.

Empleando entonces la matriz inversa, podemos vincular los estados de sabor con los de energía,

|            X ∗ ν i i = u |ν i,ααi,                           (3.18)

α=e,µ,τ

donde el asterisco sobre el elemento de matriz, indica al complejo conjugado de u. Debemos enfatizar que las matrices de transformación       −1 U y U, no son hermíticas y eso puede inducir a cierta confusión. Para evitar esto, mostraremos las expresiones dadas por las ecs. (3.16) y (3.18), en forma matricial:

              

 ν e       u1,e   u2,e    u3,e      ν1                  ν =   u 1 ,µ u 2 ,µ u · 3 ,µ   ν .                (3.19) µ 2       

ντ       u1,τ   u2,τ    u3,τ       ν3

De este producto se encuentra, por ejemplo,

|ντ i = u1,τ |ν1 i + u2,τ |ν2i + u3,τ |ν3i, (3.20)

Con expresiones análogas para −1  |  ν  i  y  |  ν  i  ; resumidas en la ec. (3.16). Empleando  U,

e        µ
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podemos expresar los autoestados de energía en función de los de sabor,

              

ν        ∗      ∗        ∗ u u u        ν

 1    1,e   1,µ    1,τ      e       =   ∗       ∗    2       ∗ ν                 u   u    u   · 2 2 ,τ  ν    .                  (3.21)  ,e

2,µ                  µ 

              

ν        ∗      ∗        ∗ u u u       ν

3          3,e     3,µ      3,τ         τ

Nuevamente, tomamos un ejemplo del producto,

|            ∗            ∗             ∗ ν i = u | ν i + u +   |ν i                       (3.22) | ν i u ,

1        e,1    e       µ,1    µ       τ,1    τ

En forma similar para |ν 2 i y |ν3i (ver ec. 3.18). Notemos que en este caso la matriz de transformación resulta del hacer el transpuesto conjugado de la matriz de la ec. (3.19). El motivo es simple,

|                                                             −1 ν i = U | ν i → U |ν                i = |ν                  i,

est. de sabor         est. de energía             est. de sabor       est. de energía

(3.23)

junto con la ec. (3.17). Por conveniencia, empleamos ahora la primera propiedad en la lista (5.2) en [1] (                          ∗ i.e h ψ | ψ i = h ψ | ψ i), lo cual nos permite escribir,

1   2           2   1

u∗ = u . (3.24)

α,i       i,α

Empleando esta propiedad, podemos reescribir la ec. (3.19), como,

              

ν1       ue,1   uµ,1    uτ,1      νe                  ν = 2   u e, 2 u µ, 2 u · .                (3.25) τ, 2   ν µ       

ν3       ue,3   uµ,3    uτ,3      ντ

Antes de terminar esta sección, es conveniente analizar el modo en que se construye un bra. Esto lo debemos hacer con cierto cuidado, pues estamos acostumbrados a trabajar con operadores hermíticos, que son autoadjuntos ( ˆ† O = ˆ O). Tenemos ahora,

|                                                                                                                † ν i = U | ν i → h ν | = h ν | U. (3.26)

est. de sabor         est. de energía        est. de sabor       est. de energía

Es conveniente expresar la última igualdad en términos matriciales,

          

               1,e 1,µ   1,τ   u∗      ∗        ∗ u u

ν                          ∗    ∗     ∗   e              =        · ν µ ν τ ν 1 ν 2 ν u    u     u    .          (3.27) 3  2,e      2,µ      2,τ 

          

u∗      ∗        ∗ u u

3,e      3,µ      3,τ
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Una vez más, demos un ejemplo del producto de matrices,

h             ∗              ∗              ∗ ν | = h ν | u + h ν | u h ν | u . +                   (3.28)

µ      1   1,µ       2   2,µ       3   3,µ

El resumen de todo esto puede sonar a un juego de palabras. Tratemos de evitarlo. Para construir un estado (i.e ket) puro de sabor como una suma de estados de energía, empleamos U. Para construir un bra puro de sabor en función de los bra de energía, empleamos   † U (ver ec. 3.27). Alternativamente, para expresar los estados puros de energía en función de los de sabor, se debe permutar el uso de          † U con U, respecto de los estados puros de sabor. Esto es resultado de que la matriz de transformación es unitaria y por lo tanto, cumple con   −1     †          † U = U y U 6 = U.

3.3.2.    Probabilidades de transición y de permanencia

Los pasos siguientes son idénticos a los de un sistema de dos sabores. Antes de escribir a la probabilidad de transición, debemos dar las expresiones explícitas para las matrices       −1 U y U; comenzando por la primera. Por conveniencia, esto lo haremos como el producto de cuatro matrices, conocidas como matrices de Pontecorvo–Maki–Nakagawa– Sakata [10]:

U = U23 · U13 · U12 · UM , (3.29)

donde,

                            

1                                       −iδ 0 0 c 0 s e

                    13          13     

U                                                              23      = 0   c 23    s    ,      U13 =  23                        0     1    0     ,  

                            

0                              iδ − s c − s e 0    c

23     23                        13             13

                             

c                               eiα1/2 s 0     0    0

 12      12                                   

U                                                                12                                      M                  2 = y U iα / =2  −s12   c12    0                 0    e      0 .  (3.30)  

                             

0     0    1                   0      0    1

En estas matrices y por simplicidad, empleamos sij ≡ sen θij y cij ≡ cos θij. Los ángulos θij se denominan ángulos de mezcla (al igual que en el caso de un sistema de dos sabores), y los discutiremos enseguida, cuando mostremos valores numéricos para las probabilidades. Antes de seguir adelante, debemos nombrar dos magnitudes que no fueron analizadas para el sistema de dos sabores. En primer lugar, la constante δ se coloca para contemplar la posibilidad de que los neutrinos violen la llamada simetría CP.
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No analizaremos qué significa esto, pero si bien por completitud mostramos la expresión con esta constante, a partir de ahora la tomaremos igual a cero. Las otras dos constantes son α 1 y α2, que se colocan en caso de que el neutrino sea una partícula de Majorana. Las partículas de Majorana son aquellas en las que partícula y antipartícula son iguales. Tampoco consideraremos esto y haremos, α1 = α2 = 0. Si bien no incluiremos estas constantes, quisimos colocarlas para enfatizar nuestro aún incipiente conocimiento de los neutrinos: simplemente no sabemos si violan o no la simetría CP, ni si son o no partículas de Majorana. Dicho esto y haciendo el producto de las matrices, tenemos,

U = U23 · U13 · U12 =

                            

= 1    0     0       c13   0 s13      c12    s12   0                  0 c 0 1 0 · − s =  23 s · 23     12 c 12 0       

0 −s23   c23     −s13   0   c13       0     0    1

                             

=      c 12c13                  s12c13            s13      − s 12 c 23 − c 12 s 23 s 13 c 12 c 23 − s 12 s 23 s 13 s 23 c .        (3.31)  13   

s12s23 − c12c23s13    −c12s23 − s12c23s13    c23c13

Debemos notar que en cada una de las matrices U12, U13 y U23, existe una submatriz de 2 × 2, con la misma dependencia funcional que la matriz empleada en el sistema de dos sabores, dada en la ec. (3.1). El resto de la matriz es un uno en la diagonal y ceros para los elementos no diagonales. En las ecs. (3.31), mostramos en forma explícita cada una de las matrices, pues si bien el producto final es difícil de interpretar, éste resulta del producto de tres matrices de simple interpretación. Notemos que en el caso anterior de dos sabores, solo podemos tener un ángulo de mezcla; que podríamos denominar θ12, y por simplicidad denominamos θ. Cuando tenemos tres sabores tenemos tres ángulos de mezcla: θ12, θ13 y θ23.

Ahora debemos construir la matriz inversa de U , que resulta simplemente del transpuesto conjugado de                                        −1 U . A modo de verificación, calcularemos U en forma explícita. El tomar la última expresión de las ecs. (3.31), y calcular su inversa es posible, pero algo labo-rioso. Esto se puede calcular en forma más simple notando que la matriz inversa para
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cualquiera de las matrices Uij , es casi trivial. Luego, notando que,

U −1    −1    −1 · U · U · U   · U   · U     I, =

12     13     23     23    13    12

donde I, es la identidad de 3 × 3. De esta forma, tenemos,

U −1        −1    −1    −1 = U · U · U =

12     13     23

                            

=  c 12    −s12    0       c13 0 −s13      1    0      0                   s 12 c 12 0 · 0 1 0 · =     0 c 23 − s 23       

0     0    1     s13   0   c13      0   s23    c23

                             

=  c 12c13   −s12c23 − c12s23s13    s12s23 − c12c23s13      s −  12 c 13 c 12 c 23 s 12 s 23 s 13 − c 12 s . 23 − s 12 c 23 s        (3.32) 13   

s13           s23c13                  c23c13

Comparando ahora esta expresión con la conjugada transpuesta de U, a partir de la ec. (3.31), vemos que son iguales, con lo cual finalizamos la comprobación. Claro, tam-bién pudo calcularse el producto   −1             −1 U · U ó U · U , y comprobar que se obtiene la identidad. No elegimos este camino pues el álgebra es más engorrosa que la discutida.

Ya tenemos todos los elementos para calcular la probabilidad de transición. Comen-zamos con un estado puro de sabor a t = 0, y escribimos su función de onda para un t ≥ 0, arbitrario,

|                      − i                                      i                                      i E t − E t ν α                1 ( t ) i = u ~                            2                     − E ~ 1,α            1           2,α            2                     3 e | ν (0) i + u e | ν (0) i + u e |ν (0)i,       (3.33) ~    t

3,α            3

donde vale la pena indicar que según nuestra notación |ν i(0)i = |νii, esto es, en el instante inicial tenemos un estado puro α. Queremos calcular la probabilidad de que a un tiempo t, llegue a un estado de sabor β, donde β puede tomar cualquiera de los tres sabores. El estado puro de sabor β final, lo escribimos por conveniencia como un bra,

h        ∗             ∗             ∗ ν | = u h ν | + u +   hν |                     (3.34) h ν | u .

β      1,β   1      2,β    2      3,β    3

A riesgo de ser reiterativos, conviene hacer un resumen de lo discutido. En primer lugar, debemos vincular las bases de estados puros de energía, con la de los estados puros de sabor, lo cual hacemos por medio de las matrices       † U y U, según estemos actuando sobre
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un ket o sobre un bra, respectivamente. Estas matrices se pueden construir dando tres cantidades: θ12, θ13 y θ23. Estos ángulos no son parámetros libres, sino que se deben fijar a partir de datos experimentales u observacionales. Dado un estado puro de sabor en el instante inicial, para conocer su evolución temporal simplemente lo expresamos en la base de estados puros de energía, para los que conocemos su evolución temporal. Finalmente, para conocer la probabilidad de que luego de un cierto intervalo de tiempo el neutrino se encuentre nuevamente en un estado puro, calculamos el producto interno entre el estado puro final (ec. 3.34) y el estado de partida al tiempo final (ec. 3.33). Esto último, lo expresamos como,

P            2 = |h ν | ν ( t ) i| .                    (3.35)

α→β     β α

En lo que sigue, debemos trabajar sobre esta última expresión, para obtener una forma que nos permita su análisis numérico. En primer lugar, repetimos las aproximaciones sobre las energías que hicimos en la Sec. 3.2:

E   q             2 4 1 m c 2 ∼ 2 2 i i = p c + m c 4 pc + 1 i = ,             (3.36) 2 pc

con i = 1, 2, 3. Además y en forma arbitraria, supondremos que,

m1 ≤ m2 ≤ m3.

Escribamos ahora el producto interno                                   −iE t/~ 1 h ν | ν ( t ) i , sacando factor común e,

β   α

h               − i                                                       i i E t ∗ ∗ − ( E − ) t ∗ − ( E − E ) t ν β | ν α ( t ) i = e 1 E ~ u u u u 2 1 ~ 1 ,β 1 ,α + e 2 ,β 2 ,α + u u 3 1 ~ 3 ,β 3 ,α e .

(3.37)

Abrimos ahora un pequeño paréntesis, para exponer algunos elementos de un tema que no desarrollaremos en detalle. Empleando la ec. (3.24) (     ∗ i.e u   = u   ), reescribimos la

α,i       i,α

última expresión como,

h               − i                                                       i i E t − ( E ν ~ β | ν α ( t ) i = e 1 2 − E 1 ) t − ( E − ) t u β, 1 u 1 ,α + u β, 2 u ~ 2 ,α e + u β, 3 u 3 E 1 ~ 3 ,α e .

(3.38)

Notemos la estructura del producto de los elementos de matriz, uβ,i ui,α, que podemos escribir como,

u           ˆ†        ˆ β,i u i,α = h ν β | V | ν i ih ν i | V|ναi.                     (3.39)

Así escrito el producto de matrices, notamos que partimos de un estado de sabor α, un cierto potencial de transición ˆ V , nos lleva a un estado de energía i. Esto ocurre en
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el elemento de matriz de la derecha9. El segundo elemento de matriz, comienza en el mismo estado de energía i, donde ahora el operador de transición nos lleva al estado final β. En resumen, pasamos de un estado de sabor inicial α al estado de sabor final β, pasando por un estado intermedio de energía i. Notemos que el estado final puede ser cualquier estado de sabor, inclusive el mismo                                     ˆ α . Sobre el operador de transición V , no lo discutiremos. Solo podemos afirmar que representa a la interacción débil, ya que el neutrino solo siente la interacción débil y la gravitatoria. Claro, es la débil la responsable de las transiciones. Fin del paréntesis.

Ahora continuamos con el cálculo de la probabilidad de transición a partir de la ec. (3.37). Como en el caso del sistema de dos niveles, reemplazamos el tiempo por,

t ∼ L = , c

además, llamamos,

κjk ≡   (Ej − Ek) .                       (3.40) ~ 1         L c

Debemos calcular entonces,

P            2                                                                         2 ∗ ∗ − iκ ∗ − α → β = |h ν β | ν α ( t ) i| = u u + u e + u u 1 ,β 1 ,α u 21 iκ 31 2 ,β 2 ,α e 3 ,β 3 ,α ,    (3.41)

donde luego de un poco de álgebra, obtenemos finalmente:

 

P                                              2 ∗ ∗ ∗ = α → β u u u κ 1 ,β 1 ,α + u cos κ + u cos + 2 ,β 2 ,α 21 u 3 ,β 3 ,α 31

+                               2 ∗ ∗ u u sen κ + u u sen κ 2 ,β 2 ,α 21             (3.42) 3 ,β 3 ,α 31

 

Es conveniente reescribir κjk (ec. 3.40) empleando la expresión para la energía dada por la ec. (3.36), de la siguiente manera,

κ     1       L 2 jk = ∆ m ,                      (3.43) jk 2 ~ c E

9 Recordemos que debemos leer a los elementos de matriz de derecha a izquierda.
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donde    2            2 2          2 2 ∆ m ≡ ( m c − ( ) m c ). Analicemos las unidades. Tenemos,

jk        j             k

h       i

∆ 2                     2 m = ( energía ),

jk

[~c] =   energía × longitud,

[L] = longitud, [E] = energía.

De este modo vemos que κjk es adimensional. Recordemos que E = pc es la energía del neutrino en el caso de poseer masa nula; donde como en la sección anterior, empleamos esta letra por conveniencia. En la próxima sección discutiremos los resultados numéricos de la oscilación de neutrinos. Antes de ello, vale la pena discutir con un poco más de cuidado la ec. (3.43): notamos que aquí tenemos la diferencia de masas al cuadrado. Si suponemos que una masa cualquiera de las tres fuera cero, no se alteraría el análisis que estamos haciendo. Luego, la oscilación de neutrinos nos dice que al menos dos de las tres masas de neutrinos en reposo deben ser no nulas. La tercera puede o no serlo.

3.3.3.    Resultados numéricos

En el caso de un sistema de dos sabores, al ángulo de mezcla le asignamos un valor arbitrario, ya que desde el punto de vista empírico, no se puede tener un sistema de dos sabores. Sin embargo, veremos enseguida que bajo ciertas condiciones, existe un sabor de neutrinos cuyo peso es manifiestamente menor al de los otros dos. En ese caso, puede simplificarse el análisis reduciendo en forma aproximada, el sistema de tres niveles a dos. Esta discusión no es central en el marco conceptual de este seminario.

Analizaremos ahora la situación realista de un sistema de tres sabores de neutrinos. El conjunto de parámetros que necesitamos para evaluar la oscilación de neutrinos consta de tres ángulos y tres diferencias de masas. Los valores de estas cantidades se tratan de ajustar para dar cuenta de la fenomenología del problema. En lo que sigue, mostraremos
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un conjunto posibles de valores para estas cantidades:

θ          o = 34,

12

θ            o = 9 , 21,

13

θ          o = 40,

23

∆ 2                       −22      2 m = 0 , 759 × 10 GeV,

21

∆ 2                     −22      2 m = 23 , 2 × 10 GeV,

31

∆ 2                     −22      2 m = 23 , 2 × 10 GeV.                      (3.44)

32

Nota para distraídos: se necesitan tres valores para las masas de los neutrinos o en forma equivalante, tres valores para las diferencias de masas. Si una de las masas es cero, ese cero es un valor. Por otra parte, al ver estos números, lo primero que debe llamar la atención es el uso de las unidades. En la práctica, emplearemos los ángulos en radianes, pero lo expresamos en grados pues en general es el modo más familiar para expresarlos. Por otra parte, la unidad de GeV2 parece poco adecuada dados los modestos valores para estas diferencias de masas. Notemos que un valor típico para estas diferencias es ∆ 2        −4    2 m ∼ 10 eV. Para comprender el uso de estas unidades, reescribamos la ec. (3.43),

ij

como sigue,                                      1 L 2 κ jk = ∆ m ,                      (3.45) jk 2 ~ c E donde los resultados de la probabilidad de transición los escribimos en función de L/E en unidades de km/GeV. Para ello, solo nos resta dar el valor de ~c:

~            −21 c = 197 , 3 × 10 GeV km.

Empleando estos elementos, debemos calcular ahora la probabilidad de transición dada por la ec. (3.42).

Realizaremos un análisis partiendo de los tres estados de sabor. En primer lugar, consideraremos que el neutrino se encuentra en un estado de sabor puro electrónico. En la Fig. (3.2), mostramos la oscilación de neutrinos para este caso y para un rango de L/E que nos permite observar el comportamiento de la oscilación para valores de esta variable que consideramos pequeños. Naturalmente para L/E = 0, que equivale al instante inicial, tenemos P e→e = 1 (Pe→µ = Pe→τ = 0), ya que por hipótesis partimos de un estado electrónico. Vemos enseguida la oscilación de los diferentes sabores, donde
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Electrón en t=0

1,0

0,8

e _

lidad                                                                                                              0,6

obabi                                                                                                              0,4

pr

0,2

0,0

0       1000      2000      3000      4000      5000 L/E [km/GeV]

Figura 3.2: Oscilación de los tres sabores de neutrinos en función de L/E; partiendo de un neutrino electrónico puro. Graficamos la probabilidad de transición o de permanencia según la ec. (3.42). Los valores para los ángulos de mezcla y diferencias de masas al cuadrado, son los dados por las ecs. (3.44).

 

en todo punto se cumple,

P α→e + Pα→µ + Pα→τ = 1, (3.46)

para α = e, µ ó τ . Sobre la discusión de esta figura, vemos que la probabilidad de ocur-rencia de cada uno de los sabores muestra un comportamiento oscilatorio decreciente para el electrón (que parte de Pe→e = 1); mientras que es ascendente para el muón y el tauón, con valores iniciales nulos. Para el caso del neutrino electrónico en el instante inicial, haremos un análisis de los rangos de variación de L/E, un poco más esmera-do que para los otros casos. En la Fig. (3.3), mostramos la probabilidad de encontrar los diferentes sabores de neutrinos hasta un valor máximo de L/E =30.000 km/GeV. Comenzamos a advertir una estructura oscilante de un rango mayor, donde las oscila-ciones de la Fig. (3.2), son en realidad una oscilación secundaria sobre la oscilación principal. Este comportamiento se confirma en la Fig. (3.4). Ir hacia valores mayores de L/E es innecesario, pues repite el comportamiento de la última figura. Esta última
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Electrón en t=0
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lidad                                                                                                              0,6
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Figura 3.3: Lo mismo que la Fig. (3.2), pero para otro rango de L/E.

 

figura muestra un comportamiento interesante, pues es obvio que el neutrino electróni-co juega un papel dominante. Si nuestro interés está puesto en el neutrino electrónico, vemos que podemos sumar los dos sabores restantes y pensarlos como un “neutrino x”. De este modo, reducimos al sistema a solo dos sabores, lo cual redunda en una impor-tante simplificación de la parte analítica del problema. No exploramos la reducción a un sistema de dos sabores, que podemos hacer o bien bajo los resultados recién descriptos o cuando uno de los sabores tiene una probabilidad baja. Solo nombramos estos puntos por completitud.

También por completitud, sigamos analizando ahora la oscilación de neutrinos cuando el neutrino inicial es, o bien moúnico, o bien tauónico; lo cual mostramos en las Figs. (3.5) y (3.6), para el caso muónico y las Figs. (3.7) y (3.8), para el caso tauónico. Al analizar todas las figuras que implican la oscilación de los tres sabores de neutrinos, lo primero que notamos es que el neutrino electrónico juega un papel más importante que los otros dos. Discutamos este punto según el sabor de neutrino que tenemos en el instante inicial:

Neutrino electrónico, ν e, en el instante inicial: La importancia relativa de νe ya fue discutida cuando mostramos que su peso es similar al de los otros dos neutrinos
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Electrón en t=0

1,0                   _ e 0,8

lidad                                                                                                              0,6

obabi                                                                                                              0,4

pr

0,2

0,0

0        15000     30000      45000      60000 L/E [km/GeV]

Figura 3.4: Lo mismo que la Fig. (3.2), pero para otro rango de L/E.

 

sumados.

Neutrino muónico, ν µ, en el instante inicial: Vemos de la Fig. (3.6), que el peso de νe es muy similar al de νµ, mientras que el peso de ντ es menor.

Neutrino tauónico, ντ , en el instante inicial: Vemos de la Fig. (3.8), que el peso de νe es muy similar al de ντ , mientras que el peso de νµ es menor.

Es interesante notar que las oscilaciones pequeñas dentro de la oscilación mayor, parecen no jugar un papel importante para el caso electrónico (ver Fig. 3.4). Sin embargo, sí lo son para los otros dos casos: vemos que νe tiene un peso similar a νµ en la Fig. (3.6); mientras que ν e tiene también un peso similar a ντ en la Fig. (3.8). Curiosamente, en este caso las oscilaciones pequeñas son relevantes, ya que están desfasadas entre los términos dominantes, lo cual garantiza la condición P α→e + Pα→µ + Pα→τ = 1, ∀α.

Antes de terminar esta sección, es importante destacar que los resultados que mostramos resultan del modelo elegido; especialmente por la elección de los ángulos de mezcla y las diferencias de masas dadas en la ecs. (3.44). Con otro conjunto de parámetros, los resultados serían diferentes. Eventualmente, alguno de los otros dos sabores de neutrinos
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sería el dominante; o bien los tres sabores serían igualmente importantes. No debemos perder de vista que existe evidencia empírica sobre la oscilación de neutrinos y lo que se desarrolla en este capítulo es solo un modelo simple, pero completo, sobre el problema.
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3.4.    Discusión

El objetivo central de este Seminario no es tanto el llevar adelante una discusión científica sobre el tema de las oscilaciones de los neutrinos, sino más bien el mostrar una aplicación de la Mecánica Cuántica a un problema físico real. De esta manera, en esta sección no haremos una proyección sobre la física de neutrinos, lo que sabemos y lo que aún nos resta entender; sino la conexión de lo discutido con nuestros conocimientos del curso de Mecánica Cuántica.

Remitimos al lector a la discusión dada en la Sec. 5.1.3 de [1]; en particular, sobre lo desarrollado a partir del quinto postulado de la Mecánica Cuántica. Para el beneficio del lector, repetimos el punto que deseamos discutir:

1. Consideramos un observable ˆ           ˆ             ˆ A , tal que [ ˆ A , H 0 ] = 0 , donde H0 es el Hamiltoniano

del sistema. Consideramos un espacio de Hilbert de dimensión tres y que cualquier otro observable conmuta también con el Hamiltoniano.

Escribimos la base de ˆ A, como {|ϕii}. Partimos de un estado inicial mezcla |ψi, de la forma,

|ψi = c 1|ϕ1i + c2|ϕ2i + c3|ϕ3 i. (3.47)

2. Se mide ˆ A, obteniendo como resultado λ3 y el estado colapsó en,

|ψi = |ϕ 3i, (3.48)

donde la probabilidad de obtener este valor fue          2 P = | c |.

3       3

3. Se mide nuevamente ˆ A, obteniendo como resultado λ3, esta vez con probabilidad

uno.

4. Se mide ahora otro observable ˆ            ˆ B , tal que [ ˆ A , B] = 0 y se obtiene b3, que es el

autovalor de ˆ B correspondiente al estado |ϕ 3i, con probabilidad uno.

5. Se mide ahora un tercer observable ˆ           ˆ C , tal que [ ˆ A , C ] 6= 0. El primer paso es expresar

|                                                                               ˆ ϕ 3 i como una combinación lineal de autovectores de C:

|ϕ3i = ˜ c 1|φ1i + ˜ c 2|φ2i + ˜ c3|φ3i. (3.49)

6. Al medir ˆ C , se obtiene ν1, y la función de onda colapsa en |φ1i.
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7. Si medimos nuevamente ˆ A, debemos escribir |φ1i en función de los vectores de la

base del operador que voy a usar para medir,

|φ 1i = ˜˜ c 1|ϕ1 i + ˜˜ c 2|ϕ2i + ˜˜ c3|ϕ3i, (3.50)

pudiendo ahora obtener nuevamente alguno de los tres posibles valores para este observable.

Notemos que en [1], este punto fue discutido en el marco de los postulados a tiempo fijo. Poco después, cuando se introdujo el tiempo, no se extendió el concepto para el caso de evolución temporal; que es lo que haremos ahora. Antes de ir de lleno al análisis del colapso de la función de onda, es pertinente diferenciar tres situaciones particulares para el cálculo de la probabilidad de transición, que comparten puntos en común y por ello, pueden inducir a confusión:

i. Sistema cerrado a tiempo fijo.

ii. Sistema cerrado que evoluciona con el tiempo.

iii                                                       10 . Sistema abierto que evoluciona con el tiempo.

En todos los casos, tomamos como hipótesis que tenemos un Hamiltoniano no dependi-ente del tiempo ˆ H 0, que representa al sistema cerrado y es el término dominante para el sistema abierto. Haremos una hipótesis más: que en el instante inicial tenemos un autoestado de algún operador que nombraremos para cada caso, que no es necesari-amente ˆ H0. Analicemos ahora la probabilidad de transición entre dos autoestados de algún operador, según el orden enumerado arriba:

i                                                                                                 ˆ . Sean | ϕ i i y | ϕ f i , los autoestados de algún operador hermítico O, en un instante

fijo. La probabilidad de transición desde el estado inicial al final es,

P          2 = |h ϕ | ϕ i| = δ ,                (3.51)

i→f        f   i        f,i

esto es, la probabilidad de transición es cero y la de permanencia es uno.

10 El carácter de sistema abierto lo da un término en el Hamiltoniano que depende del tiempo, por lo

cual en este caso, solo tiene sentido analizar la evolución temporal.
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ii. Como en el caso anterior, consideramos dos autoestados de un operador hermítico

A ˆ, que escribimos como |ϕ ii y |ϕf i. En este caso, sin embargo, la probabilidad de transición depende de si ˆ                 ˆ                     ˆ A conmuta o no con H 0 . Supongamos que [ ˆ A , H0] = 0, entonces ˆ   ˆ A y H 0 tienen una base común (ver Teorema en la Sec. 5.1.2 de [1]). La función de onda inicial evoluciona con el tiempo según,

|                − i E t ϕ i                  ~ ( t ) i = e|ϕ i,                                (3.52) i      i

para evitar dudas, t0 = 0 y |ϕii ≡ |ϕi(t = t0i. La probabilidad de transición es simplemente,

P          2 = |h ϕ | ϕ i| = δ ,                (3.53)

i→f        f   i        f,i

esto es, el mismo resultado que en el punto 1, pues la evolución temporal introdujo una fase en la función de onda, que desaparece al tomar el módulo.

Vamos a considerar ahora otro operador, ˆ            ˆ C , tal que, [ ˆ C , H0] 6= 0. Denominamos como                  ˆ | φ j i la base en la que C es diagonal; mientras que mantenemos la notación |                                        ˆ ϕ j i para la base en la que H0 es diagonal. Suponemos además que nos movemos en un subespacio de Hilbert de dimensión tres y buscamos encontrar la probabilidad de transición desde un estado inicial |φ ii, a un estado final |φf i. Llegamos ahora al punto clave del problema. Es el concepto que resulta excluyente para poder entender el tema. Escribimos las funciones de onda |φii y |φf i en la base de ˆ H0:

|φ ii   = c1|ϕ1i + c2|ϕ2 i + c3|ϕ3i,                 (3.54)

|φ f i   = d1|ϕ1i + d2|ϕ2i + d3 |ϕ3i.                (3.55)

Dadas las bases |φ ji y |ϕj i, los coeficientes c1 , c2 y c3 son únicos para obtener el estado puro |φ ii. Análogamente, los coeficientes d1, d2 y d3 son únicos para obtener el estado puro |φ f i. Introducimos ahora la evolución temporal de estos estados,

|                      − i                            i                            i E t − E t − E t φ i                    1      ~ 1 ( t ) i = c e | ϕ 1              2 i + c e | ϕ i + c e|ϕ i,         (3.56) 2    ~                      3 ~ 2 3    3

|                       − i                             i                             i E t − E t     t φ f              1       1 ( t ) i = d e ~                                    − E 2 ~ | ϕ 1       2            2              3 i + d e | ϕ i + d e|ϕ i.       (3.57) 3    ~       3

Tenemos tres valores para la energía: E1, E2 y E3. Si al menos dos de estos valores son no nulos y diferentes entre sí, entonces la dependencia temporal no
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puede sacarse como un factor común, esto es, como una fase común. Luego, solo tendremos estados puros para los instantes de tiempo tr, tales que,

e− i                   i                   i E t t ~ 1 r       − E r      − E t 2 ~ = e = e , ~ 3 r

lo cual se cumple naturalmente para tr = 0, donde por hipótesis tenemos estados puros. Notemos que no estamos pidiendo que estos coeficientes valgan uno, sino simplemente que para tr, tengan el mismo valor; lo cual permite que se expresen como una fase común.

Dado el estado |φi (t)i (ec. 3.56), queremos calcular la probabilidad de que a un tiempo t, se transforme en el estado puro |φf i. No partimos de dos estados diferentes |φii y |φf i, partimos de un único estado |φii y calculamos la probabilidad de que a un tiempo tf , se transforme en el estado puro |φf i, como se expresa en la ec. (3.55). Esta probabilidad viene dada por,

P               2              i                         i                         i ∗ − E t ∗ − E t ∗ i→f f         f     f                  1 ( t ) = |h φ | φ ( t ) i| = | d c e ~                               − E t 2 2 ~ + d e d c 1 1               c 2 2          + e |.   (3.58)

3 3    ~ 3

Analicemos esta expresión para dos situaciones extremas: i. Si t = 0, por la ortonor-malidad de los estados tenemos que P i→f (t = 0) = 0, si i 6= f y Pi→f (t = 0) = 1 si i = f. Esto es obvio y no nos aporta mucha información nueva. ii. Si los coeficientes d j, cumplen,

d         − i E t = c e ,

1              ~ 1 r 1

d         − i E2 t 2              ~ = c 2         r e , d         − i E t 3                  r = c 3       3 e , ~

donde tr es una constante arbitraria distinta de cero. Entonces, tenemos que para ese tr, Pi→f (t = tr) = 1. Esto es, para un tiempo diferente de cero, tenemos probabilidad uno. Si miramos la Fig. (3.4), notamos que existen puntos en que esta condición se cumple cuando i = f , pero en ningún caso encontramos una probabilidad de uno, cuando i 6= f . Aunque aún no lo dĳimos, debe ser obvio para el lector que el análisis de la probabilidad de transición bajo estas condiciones se corresponde con el problema de la oscilación de neutrinos.

iii. Analicemos finalmente un sistema abierto, esto es, aquel en que tenemos un po-

tencial que depende del tiempo. Para entender mejor este punto, remitimos al
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lector a la Sec. 13.3.1 de [1]. Ahí vimos que la función de onda para el caso de un sistema abierto, se puede escribir como,

|             X   −iE t/~ ψ ( t ) i = c n ( t ) e n|ϕni,                 (3.59)

n

donde                       ˆ | ϕ n i son autofunciones de H0 y el efecto de término dependiente del tiempo se refleja en la dependencia temporal de las funciones cn(t). Esto supone que el Hamiltoniano ˆ H0 es la contribución dominante. Por construcción, sabemos que esta función de onda vale para cualquier instante y en particular, para el instante inicial sabemos que,

|ψ(t = 0)i = |ϕ i i. (3.60)

La probabilidad de transición se calcula como,

P               2 ( t ) = |h ϕ | ψ ( t ) i|.                (3.61)

i→f f         f     f

Este análisis se ve muy similar al discutido en el punto anterior, en relación con la ec. (3.57). Desde el punto de vista analítico los esquemas son muy similares, pero conceptualmente son diferentes. Para el caso presente, tenemos una función de onda que parte de un estado puro y debido a la acción del Hamiltoniano evoluciona en estados mezcla o cualquier estado puro. En el caso del punto 2, el Hamiltoniano no depende del tiempo y el cambio de un estado puro a uno mezcla, se debe a que el operador que representa a los autoestados, no conmuta con el Hamiltoniano.

Para finalizar esta discusión, analizaremos el colapso de la función de onda, según lo mostramos arriba (ver puntos 1-8). En la Sec. 5.1.3 de [1], discutimos varios escenarios de colapso de la función de onda, en que los coeficientes de las funciones de onda eran desconocidos. En el caso de la oscilación de neutrinos, vemos una aplicación del método, donde conocemos los coeficientes ya que se trata de un problema físico real. Demos un ejemplo. Supongamos que el estado inicial es un estado puro de sabor electrónico:

|νei = u1,e |ν1 i + u2,e |ν2i + u3,e |ν3i, (3.62)

donde los coeficientes ui,e, están dados por la ec. (3.31). El hacer una medida sobre esta función es inconducente, pues ya sabemos su estados de sabor y más allá de su enorme
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interés, no es nuestro objetivo el medir los estados de energía. De esta manera, dejamos que evolucione con el tiempo,

|                     − i                                i                                i E t − E t − E t ν e                    1 ( t ) i = u e | ν i + u e | ν i + u e |ν i.          (3.63) 1      ~                        2                          3 ~ ~ ,e 1 2 ,e 2 3 ,e     3

Ahora bien, por la completitud en el espacio de sabor, podemos escribir,

I = |νeihνe| + |νµihνµ| + |ντ ihντ |, (3.64)

donde I es la identidad. Usando entonces la identidad, tenemos,

|ν e(t)i = hνe|νe(t)i |νei + hνµ|νe(t)i |νµi + hντ |νe(t)i |ντ i. (3.65)

Debemos notar que el subíndice e en la función de onda, indica el estado inicial. Sobre esta función de onda, medimos ahora el sabor y podemos obtener e, µ ó τ ; con probabilidades P               2                                  2                                   2 ( t ) ≡ |h ν | ν ( t ) i| , P ( t ) ≡ |h ν | ν ( t ) i| ó P ( t ) ≡ |h ν | ν ( t ) i|, re-

e→e f        e e f        e→µ f        µ e f         e→τ f        τ e f

spectivamente; que son los coeficientes módulo cuadrado de la función de onda. Supong-amos que obtenemos νµ. Entonces escribimos su evolución temporal en forma análoga a la ec. (3.63), luego como la ec. (3.65) y repetimos el razonamiento.

 

3.5.    Resumen y conclusiones

Teniendo en cuenta los elementos que desarrollamos en el curso de Mecánica Cuánti-ca, quizá el modo más amigable para comprender el fenómeno de las oscilaciones de neu-trinos sea mostrando rápidamente la ec. (3.65); que elegimos mostrar al final. Luego, es pertinente explicar el motivo por el que postergamos ese punto. Los seminarios persiguen varios objetivos. Por una parte, aplicar los elementos de Mecánica Cuántica a proble-mas científicos de interés. Además, se busca introducir al alumno en la metodología de trabajo y estudio de un trabajo científico (para ser claros: de un “paper”). Es por este último motivo que elegimos presentar a la ec. (3.65) al final; ya que este tipo de análisis está ausente en un trabajo científico y se corresponde más bien a un texto de Mecánica Cuántica. La presentación que hacemos del tema, busca ser similar a la de un trabajo científico, partiendo de la Introducción, hasta llegar a los  resultados  numéricos y las conclusiones.
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Hecha esta aclaración, vayamos a la física del proceso que estudiamos. El fenómeno de las oscilaciones de neutrinos se interpreta por medio de dos elementos básicos: en primer lugar, que los autoestados de sabor no son autoestados de energía. En segundo lugar, que al menos existen dos autoestados de energía con masa en reposo no nula. Solo podemos entender la oscilación de neutrinos en términos mecánico cuánticos. Dentro de este modelo, el vínculo entre los autoestados de sabor y de energía, está dado por una matriz unitaria. Para construir esta matriz unitaria empleamos un enfoque empírico: se construyó en términos de ángulos de mezcla y diferencias de masas, con el fin de ajustar datos experimentales y observacionales. Eventualmente, pueden pensarse en modelos teóricos para obtener esta matriz, pero eso va más allá del objetivo de este seminario.

Además de obtener expresiones analíticas para describir las oscilaciones de neutrinos, llevamos adelante un análisis numérico. Para ello, empleamos un solo conjunto de valores para los ángulos de mezcla y para las diferencias de masas. No existe aún la suficiente cantidad de datos experimentales u observacionales, que justifiquen variar estos paráme-tros. Más allá esto, el modelo aquí discutido es consistente con los datos que sí existen. Medir un neutrino es extremadamente difícil, ya que la interacción de los neutrinos con un detector tiene una probabilidad extremadamente baja. Afortunadamente, los procesos naturales generan un número muy grande de neutrinos; lo cual permite detectar algunos. Aún así, la física de neutrinos muestra más interrogantes que certezas. Esto es, se trata de un área de investigación básica interesante.
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Figura 3.5: Oscilación de los tres sabores de neutrinos en función de L/E; partiendo de un neutrino muónico puro. Graficamos la probabilidad de transición o de permanencia según la ec. (3.42). Los valores para los ángulos de mezcla y diferencias de masas al cuadrado, son los dados por las ecs. (3.44).
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Figura 3.6: Lo mismo que la Fig. (3.5), pero para otro rango de L/E.
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Figura 3.7: Oscilación de los tres sabores de neutrinos en función de L/E; partiendo de un neutrino tauónico puro. Graficamos la probabilidad de transición o de permanencia según la ec. (3.42). Los valores para los ángulos de mezcla y diferencias de masas al cuadrado, son los dados por las ecs. (3.44).
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Figura 3.8: Lo mismo que la Fig. (3.7), pero para otro rango de L/E.
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Capítulo 4

 

 

El decaimiento del neutrón

 

Introducción

Es un hecho experimental que un neutrón libre decay en un protón, un electrón y un antineutrino; luego de algunos minutos. Por otra parte, tenemos dos neutrones, junto a dos protones, formando el núcleo del helio. En este caso, estos neutrones son estables; esto es, no decaen. De este modo, decimos que el helio es un núcleo estable. Claro, existen núcleos inestables, que decaen de diferentes maneras. Uno de los canales de decaimiento es el llamado decaimiento–β: en el interior del núcleo ocurre la reacción ya descripta:

n       − → p + e + ¯ ν,                      (4.1)

donde por                                  − n designamos al neutrón, p protón, e electrón y ν ¯ es el antineutrino. Debemos escribir la carga del electrón, pues la antipartícula del electrón es el postitrón; que se escribe como + e. Existe aquí un tema de tradición, pues al resto de las antipartículas se las escribe con una barra, como mostramos con el antineutrino en el capítulo anterior.

Si bien en este capítulo no estamos interesados en el análisis de la estabilidad de los núcleos, mencionamos el tema para enfatizar que el tiempo de decaimiento del neutrón dado por la ec. (4.1), depende de si el neutrón es libre o si está en el medio nuclear, pudiendo ser estable para algunos núcleos y para otros no. En cualquier caso, el tiempo de decaimiento más rápido es aquel en que tenemos un neutrón libre.

Junto a la ec (4.1), podemos también tener la reacción inversa que solo ocurre en
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un medio nuclear, dada por,

e− + p → ν + n, (4.2)

e

Esta reacción es particularmente interesante, pues en el colapso de una estrella masiva en supernova, si el remanente de la exploción es una estrella de neutrones; es esta última reacción la responsable de que en el objeto compacto resultante dominen los neutrones.

En la materia estelar, como el de una estrella de neutrones, estas dos reacciones ocurren todo el tiempo. El sistema se dice en equilibrio químico cuando la fracción relativa de cada partícula permanece constante. Para ser claros: el equilibrio químico no implica la ausencia de reacciones, sino el equilibrio entre ambos sentidos para cada reacción.

Esta discusión nos permite entender la importancia astrofísica de estas reacciones y la del decaimiento del neutrón en particular. Claro, el resultado en materia estelar es más complejo que el correspondiente al de un neutrón libre. Pero para llegar a ese punto, es conveniente entender primero el decaimiento de un neutrón libre; que es el objeto de este capítulo.

Antes de ir al cálculo del decaimiento, debemos mostrar algunos elementos de mecáni-ca cuántica relativista. Luego mostraremos un modelo simple para describir el decaimien-to. Veremos que el resultado aún para este modelo simple, está de acuerdo con el valor experimental. Este capítulo se basa en la discusión dada por el libro de Griffiths [11].

 

4.1.    La ecuación de Dirac

En esta sección discutiremos brevemente la ecuación de Dirac, solo con el objetivo de dar los elementos necesarios para comprender el decaimiento del neutrón. Pondremos algún cuidado en mostrar el tránsito desde la ecuación de Schrödinger, a la ecuación de Dirac. Pero una vez que tengamos la ecuación de Dirac, mostraremos sus soluciones sin demostración. El alumno interesado puede encontrar el desarrollo de la resolución de la ecuación de Dirac en cualquier libro de mecánica cuántica relativista, en particular en [11]. La introducción de la relatividad en mecánica cuántica conduce a soluciones de las ecuaciones relativistas con energía negativa. Estas soluciones no solo no son descar-tadas, sino que implican la existencia de antipartículas, las cuales pueden ser observadas
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experimentalmente. Si bien ya mencionamos al antineutrino, afirmamos ahora que las ecuaciones de la mecánica cuántica relativista predicen la existencia de antipartículas. Es más, veremos enseguida que toda partícula tiene en su función de onda un pequeño componente de antipartícula. Análogamente, toda antipartícula tiene una componente de partícula.

Vayamos entonces a la ecuación de Dirac. En primer lugar, recordemos a las trans-formaciones canónicas:

Mecánica Clásica → Mecánica Cuántica

r → r,

V (r) → V (r),

~

p →   ∇,

i

∂

E → i~ , (4.3)

∂t

donde r, V (r), p y E representan posición, energía potencial, cantidad de movimiento y energía, respectivamente.

En mecánica clásica, la energía mecánica total, es la suma de la energía cinética, más la energía potencial:

p2

+ V (r) = E,

2m

si ahora empleamos las transformaciones canónicas y aplicamos esta expresión a una función de onda ψ (r, t), tenemos,

~2                              ∂ ψ(r, t)

−    2 ∇ ψ(r, t) + V (r)ψ(r, t) = i~        ,             (4.4)

2m                      ∂t

que es la ecuación de Schrödinger. Tomemos ahora la expresión (también clásica) de la energía relativista, donde dejamos de lado el potencial,

E 2      2 2       2 4 − p c = m c,                             (4.5)

que en notación relativista se puede escribir como (ver Apéndice D),

pµ       2 2 p − m c = 0.                          (4.6)

µ

Debemos notar que pµ representa a cada una de las componentes de cuadrivector energía–impulso. De esta manera, la relación canónica para el impulso y la energía,
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se puede escribir como,

pµ → i~∂ , (4.7)

µ

donde,

∂ µ ≡    ,                           (4.8) µ ∂x ∂

o en forma más explícita,

1 ∂            ∂            ∂            ∂

∂ 0 =     ,     ∂1 =    ,     ∂2 =    ,      ∂3 =    .         (4.9)

c ∂t            ∂x           ∂y           ∂z

Reemplazando ahora la ec. (4.8), en la expresión para la energía relativista ec. (4.5), tenemos,

− 2 µ                2 2 ~ p p ψ ( r , t ) − m cψ(r, t) = 0,                   (4.10)

µ

que se puede reescribir como,

− 1   2                                 2 ∂ ψ ( r , t ) mc 2 + ∇ ψ ( r , t ) = ψ (r, t)             (4.11) 2 2 c ∂t ~

Esta ecuación se conoce como ecuación de Klein–Gordon y al igual que la ecuación de Schrödinger, describe la evolución de la función de onda de una partícula con spin cero. Solo que en términos relativistas, claro. Notemos que la ecuación de Klein–Gordon es de segundo grado en el tiempo. Esto genera algunas dificultades, que no discutieremos.

Vayamos ahora al caso de partículas de spin–1/2. Dirac buscó una ecuación de primer orden en el tiempo, que fuera compatible con la expresión relativista de la energía. Para entender la idea, consideremos el caso en que p = 0. En este caso, la ec. (4.6), resulta,

( 0 2       2 2       0            0 p ) − m c = ( p − mc )( p + mc) = 0,                 (4.12)

que se pueden escribir como dos ecuaciones de primer orden dadas por,

p0 − mc = 0, (4.13)

p 0 + mc = 0. (4.14)

La solución de cualquiera de estas ecuaciones verifica la expresión de la energía relativista. Debemos considerar ahora la situación en que el impulso es diferente de cero. Para ello, buscamos reescribir la energía en forma similiar a la ec. (4.12):

pµ       2 2      k            λ p − m c = ( β p + mc )( γp − mc) = 0.             (4.15)

µ               k           λ
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El desarrollo a partir de este punto para llegar a la ecuación de Dirac, no es complejo, pero es laborioso y no es el objetivo de este seminario. El hecho de que trabajamos con partículas de spin–1/2, se emplea en este desarrollo. El resultado es,

p µ       2 2      k            λ p − m c = ( γ p + mc )( γp − mc),               (4.16)

µ               k           λ

donde k γ son matrices de 4 × 4, dadas por,

                  

0                      i I                       i 0 0 σ

γ                               =      , γ =        .           (4.17)

0                     i −I − σ    0

La identidad matricial de                i 2 × 2 es I y σ son las matrices de Pauli, que recordamos por conveniencia,

                            

σ 1        0   1              0 −i              1   0   2   3   =   , σ =   y σ =   .       (4.18)

1   0               i   0               0 −1

Notemos que emplearemos en forma indistinta la notación (1, 2, 3)  (x, y, z).

La solución que resulte de igualar a cero cualquiera de los dos términos de la derecha de la ec. (4.16), respeta la expresión de la energía y es de primer orden en el tiempo. Tomamos en particular,

γ λp − mc = 0. (4.19)

λ

Haciendo la tranformación canónica y aplicando este operador a una función de onda, tenemos,

i    µ ~ γ∂ ψ − mcψ = 0                       (4.20)

µ

Esta es la ecuación de Dirac. Por construcción, la función de onda tiene cuatro compo-nentes,                                       

 

ψ   ψ 1      ψ  2  =   .                     (4.21)    ψ 3   

ψ 4

Esta cantidad se denomina bi-espinor o espinor de Dirac. No es un cadrivector en el sentido relativista. El hecho de tener cuatro términos se debe a que estamos trabajan-do con partículas de spin–1/2: las dos componentes superiores son el espinor de dos componentes para la parte de partícula y las inferiores corresponden a la antipartícula.
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Para finalizar, damos la solución de la ecuación de Dirac para una partícula libre:

                    

 

u(1)        1                     0               0 1   (2)   = ζ   , u = ζ             (4.22)  c p z   c ( p x − ip y )   2   2  E + mc E + mc    

c(px+ipy)                         c(−pz)

E    2                                      2 + mc E + mc

 c(px−ipy)                                     2 E       

v          E+mc         (2)        c(px+ipy)    = ζ   , v = − ζ 2 1          (4.23)     E + mc 0       0 (1)        (−pz)                            E+mc       2                         2 c +mc                    c pz

1

q

Con ζ = (E + mc2)/c

 

4.2.    La Regla de Oro de Fermi relativista

Es interesante notar que en mecánica cuántica calculamos mayoritariamente tres cantidades: estados ligados, decaimientos y reacciones entre partículas11. Mientras que los estados ligados se calculan en general empleando la teoría no relativista, ya que las energías puestas en juego son menores a la masa en reposo de las partículas involucradas; para las otras dos cantidades se emplean modelos relativistas. Notablemente, a veces los efectos relativistas no son relevantes. En ese caso, hacia el final del cálculo se toma el límite no relativista. Se emplea el modelo relativista, pues gracias al formalismo desarrol-lado básicamente por Richard Feynman, el planteo del problema en términos relativistas es más simple.

Existe una pregunta que es relevante: ¿cuál es la magnitud física que debemos cal-cular, cuando estudiamos el decaimiento de una partícula? En primer lugar, debemos establecer el canal de decaimiento. Esto es, en qué partículas decae. La respuesta a esto no es única, pues algunas partículas poseen un único canal de decaimiento, mientras que

11 Debemos notar que las llamadas reacciones de dispersión de partículas, representan cualquier pro-

ceso en que dos o más partículas interactúan entre sí. Las partículas iniciales y finales deben ser las mismas, aunque sus energías y momentos cambien. Por otra parte, la reacción (4.2), es una reacción de absorción, en que un electrón y un protón reaccionan dando origen a un neutrino y un neutrón.
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otras poseen dos o más canales. De este modo, nuestro objetivo es conocer la probabi-lidad relativa de cada canal de decaimiento, junto a la vida media de cada uno de ellos (en la Sec. 14.2 de Ref. [1], se discute la vida media y el ancho de decaimiento). En este párrafo, realizamos afirmaciones mecánico cuánticas algo sutiles. Subyace el concepto de partícula idéntica. Si pensamos que la partícula que decae es un neutrón, todos los neutrones del Universo son iguales. Aún así, decaen con tiempos diferentes. Es por ello que calcularemos el valor medio del tiempo de decaimiento o vida media. Es más, si exis-ten diferentes canales de decaimiento, a cada canal le debemos asignar una probabilidad relativa. El hecho de que partículas idénticas posean diferentes canales de decaimiento, con tiempos de decaimiento que difieren entre sí, aunque el valor medio arroja siempre el mismo valor, es un fenómeno puramente cuántico.

Comencemos con las cuentas. Empleamos la letra griega τ para designar a la vida media. La magnitud inversa se denomina ancho de decaimiento, se emplea la letra Γ y se vincula con la vida media como,

1

Γ = . (4.24)

τ

Para calcular el ancho de decaimiento Γ, empleamos la Regla de Oro de Fermi relativista. En la Sec. 13.6 de Ref. [1], se deduce la Regla de Oro de Fermi para el caso no relativista. En este trabajo no demostraremos dicha regla para el caso relativista. El lector interesado en tal demostración, la puede encontrar en la Sec. 6.10 del libro de Ryder [12]. La estructura de la Regla de Oro es simple: resulta del producto de un elemento de matriz, |M|2, que tiene en cuenta la dinámica del problema, junto a las limitaciones en el espacio de fases de los estados finales del decaimiento. Por conveniencia y sin pérdida de generalidad, pensaremos que la partícula que decae se encuentra en reposo.

Designamos por medio de números a las partículas: pensamos que la partícula 1 se encuentra en reposo y decae en las partículas 2, 3,...,n. Debemos calcular la reacción,

1 → 2 + 3 + 4 + ... + n. (4.25)

La expresión de la Regla de Oro de Fermi para este decaimiento es (ver Ref. [11]),

Γ =   S   n Z    4 Y dpj     2     4                      2     2 2    0 h|M| i (2 π ) δ ( p 1 − p 2 − ... − p n )2 πδ ( p − m c ) θ ( p), (4.26) j j j 2 ~ m (2 π ) 4 1 j =2

donde m i es la masa de la partícula i-ésima y pi su cuadrimomento. La cantidad S evita el doble conteo de partículas idénticas en el estado final. Por cada conjunto de n
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partículas idénticas, agregamos un factor 1/n!. Ejemplo: supongamos que tenemos cinco partículas en el estado final, dos de un tipo y tres de otro. En ese caso,

1      1      1

S =    =     =   .

2! 3!     2 × 6    12

Leamos con cuidado la expresión (4.26). Como dĳimos, la dinámica (esto es la interac-ción o fuerza responsable del decaimiento), está contenida en el elemento de matriz al cuadrado      2 h|M| i; donde ahora agregamos el símbolo h i que indica que promediamos sobre el spin inicial y sumamos sobre los spins finales. Todo el resto es espacio de fases y nos dice que debemos integrar sobre el cuadrimomento de todas las partículas salientes (que son el producto final de la desintegración); pero sujetas a ciertas restricciones:

1. 12 2  L  as  partículas  salientes  se  encuentran  en  la  capa  de  masa  .  Analíticamente,  p

j

= 2 2                                          2       2 2 m c , expresado en la distribución δ ( p − m c).

j                                                     j         j

2. Las energías de las partículas salientes es positiva. Esto indica que estas partículas

no se encuentran ligadas y por ello colocamos la función escalón     0 θ ( p).

j

3. Debe conservarse el cuadrimomento energía–impulso, lo cual está garantizado por

la distribución δ(p1 − p2 − ... − pn).

Volviendo al análisis de la expresión (4.26), el elemento de matriz al cuadrado 2  h|M|i

depende de todos los cuadrimomentos (p1, p2,... ,pn). Sumamos sobre todos los estados finales, pesados por el elemento de matriz al cuadrado. Hagamos ahora un poco de álgebra para que podamos manejar mejor esta expresión. Antes de ello, demos dos detalles. En primer lugar, vemos que aparecen un conjunto de factores 2π. Estos factores podrían simplificarse, pero los mantenemos en la ec. (4.26), pues debemos colocar un 2π, por cada:

un 2π por cada δ() (notar que en la conservación del cuadrivector energía–impulso tenemos cuatro deltas).

un                                                      4          0 1 / (2 π ) por cada diferencial en la integración. Señalemos que d p = dpdp; dp = dpxdpydpz .

12 La expresión “en la capa de masa” (en inglés, on the mass shell), es una manera de decir que se

trata de partículas reales.
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En la expresión (4.26), se pueden evaluar analíticamente la integrales en energía (R 0  dp):

δ 2       2 2           0 2      2       2 2 ( p − m c ) = δ [( p ) − p − m c],                    (4.27)

donde omitimos el subíndice j de las partículas por simplicidad. Empleamos ahora la propiedad,

δ   2             1 2 ( x − a ) = [δ(x + a) + δ(x − a)],     a > 0.            (4.28) 2 a

Empleando esta ecuación, obtenemos,

θ 0                                       1                   q 0 2 2 2 2 0 ( p ) δ [( p ) − p − m c ] = √ δ p − p 2 + m 2 c 2 ,       (4.29) 2 p 2 + m 2 c 2

donde la función escalón hace que debemos quedarnos solo con la solución de energía positiva. De esta manera, podemos reescribir la ec. (4.26), como,

Γ = S Y n Z dp           1 j 2         4 h|M| i q (2 π ) δ(p1 − p2 − ... − pn),   (4.30) 2 ~ m (2 π ) 3 2 2 1 j =2 2 p + m c 2 j j Finalmente escribirnos,

Γ = πS Y n Z             1 2 d p h|M| i q      δ(p − j 1 p2 − ... − pn)      (4.31) 2 ~ m 2 2 2 p + m c 2 1 j =2 j j

 

En la próxima sección, daremos un ejemplo de empleo de esta ecuación.

 

4.3.    El decaimiento del neutrón

Escribimos nuevamente la reacción del decaimiento del neutrón en un protón, un electrón y un antineutrino, llamado decaimiento–β:

n       − → p + e + ¯ ν.                     (4.32)

Cuando se escribe una reacción, es común evaluar el llamado valor–Q, que es la diferencia entre la suma de las masas de las partículas iniciales (en nuestro caso, solo un neutrón) y la suma de las masas de las partículas finales. Expresamos las masas en unidades de energía. Designamos al valor–Q como ∆Q. Si es positivo, quiere decir que disponemos
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de un exceso de energía y la reacción es posible13. Este exceso de energía se transforma en energía cinética de las partículas salientes. Tenemos entonces,

∆      2         2           2          2 − Q β = m n c − m p c − m e c − m ¯ ν c,                (4.33)

donde agregamos el subíndice β para referirnos a la reacción (4.32). Los valores de las masas son:     2                            2                             2 m c = 939 , 565 MeV, m c = 938 , 272 MeV y m c = 0, 510MeV. No

n                     p                      e

sabemos si el neutrino tiene o no masa en reposo. Sin embargo, tenemos cierta certeza sobre el límite superior para la masa del neutrino:

m 2        −6 c < 10 MeV,   esto es, 1eV.                   (4.34)

ν ¯

Notemos que dejando de lado al neutrino, la partícula más liviana que conocemos es el electrón, con una masa quinientos mil veces mayor que la cota superior de la masa del neutrino.

Finalmente, el valor-Q para el decaimiento del neutrón, o decaimiento–β, es,

∆ ∼ Q β = 0, 78 MeV. (4.35)

Esto nos dice que el decaimiento–β es posible.

Regresemos a la reacción de la que deseamos calcular su vida media,

n       − → p + e + ¯ ν,                     (4.36)

donde emplearemos la Regla de Oro de Fermi (ec. 4.31). En primer lugar, debemos evaluar el elemento de matriz      2 h|M|i. Para ello, es conveniente mostrar un diagrama, denominado diagrama de Feynman, que se muestra en la Fig. 4.1. Este diagrama se debe leer de abajo hacia arriba. Las flechas rectas ascendentes indican fermiones (neu-trón, protón y electrón), mientras que las flechas rectas descendentes representan anti fermiones (antineutrino). La curva ondulada es la interacción que produce el decaimien-to. En nuestro caso se trata de la interacción débil. Comenzando desde abajo, vemos un neutrón que por la acción de la interacción débil, se transforma en un protón, un electrón y un antineutrino. Dado un diagrama de Feynman, existen reglas (las llamadas

13 Si ∆Q < 0, la reacción no puede ocurrir entre partículas en reposo. Pero si las partículas iniciales

poseen la suficiente energía cinética para compensar el valor de ∆Q, entonces la reacción sí puede tener lugar.
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p          − e        ν ¯

p         p −       p p e¯ ν

q

p n



n

Figura 4.1: Diagrama de Feynman para el decaimiento del neutrón. Por medio de este diagrama calculamos el elementos de matriz M. Las flechas representan a fermiones, la curva ondulada es la interacción débil y por medio de puntos se indican los vértices de la interacción.

 

“reglas de Feynman”, claro); que permiten traducir la imagen mostrada en la Fig. 4.1, en una expresión analítica para M.

Notemos, sin embargo, que en la expresión para el ancho de decaimiento Γβ , lo que tenemos no es              2 M , sino |M|. En la Fig. 4.2, mostramos en forma gráfica el diagrama que corresponde a     2 |M|; donde por simplicidad no identificamos a cada una de las partículas, pues eso es evidente de la comparación con la Fig. 4.114. Leamos ahora el diagrama de la derecha en la Fig. 4.2: debemos dar el valor de la energía impulso de las líneas abiertas, en nuestro caso es solo el neutrón. Pensamos al neutrón en reposo, por lo cual su impulso es cero y su energía es su masa en reposo multiplicada por la velocidad de la luz al cuadrado. Del mismo modo, en el diagrama, le asignamos valores específicos a la energía impulso de las líneas internas. Las reglas de Feynman nos dicen que al calcular la contribución física del diagrama, debemos sumar (integrar) sobre las líneas internas. Esto lo vemos en la expresión de la Regla de Oro de Fermi (ec. 4.31), que emplearemos enseguida y en donde veremos en forma explícita dicha suma.

14 En forma intencional, en la primera figura le dimos a las líneas un cierto ángulo; mientras que en la

segunda figura, las flechas de la izquierda son verticales, representando al mismo diagrama. El ángulo de las líneas no tiene ningún contenido físico. Se dibujan de una manera u otra por razones estéticas o de conveniencia del dibujo.
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2

 

→

 





Figura 4.2: Representación esquemática de     2 |M|: el diagrama de la Fig. (4.1), representa a una amplitud de transición. En el diagrama de la izquierda, dibujamos nuevamente a este diagrama. El mismo, multiplicado por su adjunto, genera el diagrama de la derecha. En el diagrama de la derecha, las líneas abiertas representan al neutrón, mientras que se debe sumar sobre las líneas internas; que de izquierda a derecha, representan al protón, electrón y al antineutrino.

 

Por claridad, mostremos el valor de los cuadrivectores energía impulso de cada una de las partículas de la reacción (4.32):

1. pn = (mnc, 0, 0, 0),

2. p¯ ν = (|~p¯ ν|, p ), ν ¯

q

3. p            2 p = ( ( p ) + m2c2 , p ), p p p

q

4. p              2       2 − e = ( ( p m e − ) +−c2, p   ). e e −

Consideramos un neutrón libre. Debido a que elegimos el sistema de referencia donde se encuentra en reposo, su impulso es cero y su energía es la masa en reposo. Vale la pena también enumerar algunas propiedades generales para partículas en el marco de la mecánica cuántica relativista:

1.   µ p = (E/c, p , p , p )

x   y   z

2.   2      2       2       2 2 p = p − p = m c

0

 

Facultad de Cs. Astronómicas y Geofísicas   |  UNLP                                                         113


EDUARDO BAUER

q

3. Para una partícula libre, E =   p2c2 + m2c4

4. Para una partícula sin masa en reposo,                   2 i , E = | p | c ∴ p = 0

i           i              i

En la ec. (4.34), mostramos que si el antineutrino tiene masa, ésta es muy pequeña. Por simplicidad, en lo que sigue supondremos que la masa en reposo del antineutrino es cero.

Vayamos entonces al uso de la Regla de Oro de Fermi para el cálculo del ancho de decaimiento del neutrón, Γβ . Empleando la ec. (4.31), tenemos,

Γ     Z      3                3                     3 d p ν ¯ d p   − p d p e = β q q (2 π ) 3 2 | ~p 2 2 2 ¯ ν | (2 π ) 3 2 | ~p p | + m c 3 2     2   2 p (2 π ) 2 | ~p − e | + m − c e

×       4   (4)                         − (2 π ) δ ( p n h|M|2i

− p¯ ν − pp − pe ), (4.37)

2~m n

donde emplearemos la siguiente expresión para      2 h|M|i:

h|M| 2      1    4 g ω   2     2 i = ( c + 3 c ) (p           − )          (4.38) V A n · p ν ¯ )( p p · p e , 2 M ω c 2

con cV = 1,00 and cA = 1,27; mientras que el valor para la constante de acoplamiento la damos en el Apéndice E. Esta expresión se evalua en forma aproximada en el Apéndice F. Desafortunadamente, un cálculo riguroso de esta expresión excede el objetivo de este seminario. En el Apéndice F, se muestra un esquema completo de su cálculo, aunque con algunos puntos algo débiles, con el fin de mostrar en forma orientativa el tipo de cálculo que implica el elemento de matriz. El paso siguiente es desarrollar los productos escalares de esta expresión (ver la lista de valores explícitos de los cuadrivectores pn, pν ¯, pp y p − e),

pn · pν ¯ = mnc|~p¯ ν|, (4.39)

mientras que para pp · p − e , tenemos,

(pp + p − 2         2      2             − e ) = p + p − + 2 p · p = p e p e

=   2 2       2   2             − m c + m − c + 2 p p · p p e e

(         2         2      2 p − p ) = p + p − 2p · p =

n    ν ¯         n     ν ¯      n   ν ¯

=   2 2 m c + 0 − 2m c|~p |.               (4.40)

n            n   ν ¯

De la conservación de la energía–impulso, pn − p¯ ν = pp + p − , tenemos, e

(pp + p − 2                2 e ) = ( p n − p ν ¯ ),                         (4.41)
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de modo que,                                             ! 2 c 2 m | ~p | 2 2 2 n ¯ ν p p · p − e = m − m − m − −             (4.42) n p e 2 c Usando las Eqs. (4.39) y (4.42) en la Eq. (4.38), tenemos,

h|M| 2      m                                     ! 4 n g ω 1 2 m | ~p | 2 2 2 2 2 n ν ¯ i = ( c + 3 c ) | ~p | m V A ν ¯ − m − m − − .   (4.43) n p e c M ω 4 c Reescribimos la distribución delta como sigue,

q

δ(4)                                   (3)                                                                2 ( p n − p ν ¯ − p p − p − e ) = δ ( p + p + p − ) δ ( m c − | ~p | − ( p ν ¯ p e n ν ¯ − ) 2 + m        u , e − c 2 − ) e

(4.44)

donde,

q         q

u ≡ (p )2 + m2c2 = (p + p −)2 + m2c2. (4.45)  p  p  ν  ¯  e  p

Evaluamos ahora la integral 3                (3)                  − d p p , usando δ ( p + p + p). De este modo tenemos, ν ¯ p e

 

Γ     1           Z   3          3                   2 d p p − 2 2 ν ¯ d e h|M|i β = ( c + 3 c ) q V A 4 | ~p ν ¯ | 2 | ~p 2 2 − 16(2 π ) 5 u ~ m e | + m − cn e q

× δ(mnc − |~pν ¯| −   (p − 2       2    2 ) + m c   u)                  (4.46) e − − . e

Ahora, elegimos al eje-z en la dirección de p −. Podemos escribir entonces, e

d3               2 p = | ~p | d|~p | sin(θ)dθ dφ

ν ¯          ν ¯       ν ¯

u2            2          2                               2 2 − = | ~p ν ¯ | + | ~p e | + 2 | ~p ν ¯ || ~p − e | cos( θ ) + m c.              (4.47) p

Esto permite reemplazar la integración sobre θ, por la integración sobre u,

∂u2      ∂u ∂θ = 2u    = −2 |~pν ¯| |~p − e| sin(θ),                   (4.48) ∂θ

donde tenemos,

u du = −|~p ν ¯| |~p − e| sin(θ) dθ. (4.49)

Ya que la integral sobre φ es simplemente 2π, tenemos,

d3              |~p ν ¯| p ν ¯ = − 2 π d|~pν ¯| u du.                          (4.50) | ~p e − |

Reemplazamos en la ec. (4.46),

 

Γ     1           Z                        3                    2 d p − h|M|i 2 2 e β = ( c + 3 c ) d | ~p | ( − 1) du q V A ¯ ν 4 4 2 2 | ~p − − 16(2 π ) ~m e | | ~p e | + m − c 2n e q

× δ(m nc − |~pν ¯| −   (p − )2     2 + m   2                           (4.51) e − c − u ) . e
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En el próximo paso, realizamos la integral sobre u, que es simplemente,



I    Z                      u + 1     if u− ≤ arg ≤ u+ = du δ ( arg − u ) =              (4.52)  u −   0 if arg < u − or arg > u − ,

q

donde arg ≡ mnc − |~p           2       2 ν ¯ | − ( p − ) + m−c2. Los valores de u± son los extremos del e e segmento donde arg − u = 0. En forma explícita, tenemos,

q

u                    2 2 ± = ( | ~p 2 − e | ± | ~p ν ¯ | ) + m c                   (4.53) p

La condición de que I 6= 0, de la ec. (4.52), nos da también el rango de integración sobre pν ¯; que se obtiene resolviendo,

q

mmc − |~pν ¯| −   |~p − e|2      2 + m−c2   = u e±

q           q

mmc − |~pν ¯| −   |~p   2       2   2 − e | + m − c   =    (|~p           2 − | ± | ~p ν ¯ | )    m2   . e e + c 2       (4.54) p

Afortunadamente el término    2 | ~p | se cancela (para evitar dudas, en la ecuación sobreviven

ν ¯

sólo los términos lineales     ∓ | ~p |). Las soluciones que obtenemos son,

ν ¯

|     ∓   1    2       2       2                            2 − ( m − m − m ) − m c | ~p − | 2 + m c2 2 n p e n e − e ~p q

ν                        q ¯ | =                                 .            (4.55) 2 m n c − | ~p 2 − e | + m − c 2 ± | ~p − | e e

Notemos que    ∓                      − | ~p ¯ ν | depende de la energía ( E              − e ), la masa ( m e) y del módulo del momento (|~p − e|), del electrón.

Punto menor: +  Los límites para la integración sobre  |  ~p  |  son: el límite inferior  |  ~p  |

ν ¯ ν  ¯

(de −                  −     + u ) y el límite superior | ~p | (de u). Por otra parte, tenemos un signo negativo en

¯ ν

Γβ de la ec. (4.51), que empleamos como sigue:

Z    −            Z    + | ~ p ν ¯ | | ~ p ν ¯ |

−    d|~pν ¯| · · · =        d|~pν ¯| · · ·                     (4.56) + − | ~ p ¯ ν | | ~ p ν ¯ |

Resulta ahora conveniente definir una función de E − e, como sigue,

J        Z                                          ! + | ~ p ν ¯ | 2 m | | 2 2 2 n ~p ν ¯ ( E − e ) = d | ~p ν ¯ | | ~p ¯ ν | m − m − m − − n p e − | ~ p ν ¯ | c

(    + 2       − 2 | ~p | ) − ( | ~p | )

= ( 2       2       2        ¯ ν             ¯ ν m − m − m )

n            − p e          2

2        + 3       − 3 m ( | ~p | ) − ( | ~p | )

−   n    ¯ ν          ¯ ν    .                          (4.57)

c           3
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Reemplazando la ec. (4.43) en la ec. (4.51), junto a la función J (E − e), podemos escrbir,

Γ    1           Z                    4 | ~p − | g ω        1 2 2 e − β = ( c + 3 c ) d | ~p | q        J (E − V A e e)    (4.58) 4 (4 π ) 3 ~ c M 2 ω | ~p 2 e − | + m 2 − c e

Recordemos que elegimos al eje z en la dirección de p −, entonces, e

d3                   2 − p e = 4 π | ~p − e |d|~p − e|                             (4.59)

q

Recordando que E            2       2 e − = c | ~p e − | + m   2 − c, tenemos, e

d dE − e         |~p − e | = c q      ,                   (4.60) | ~p − 2 e | 2 | ~p e − | + m − c 2 e

de este modo,

|                     E −   − e dE e ~p − − e | d | ~p e | = .                           (4.61) c 2

Finalmente, tenemos,

Γ    1                     Z 4 1 g    2    2 ( m n c − m p c) 2 2 ω β = ( c + 3 c ) dE − J (E − V A e e).      (4.62) 4 (4 π ) 3 ~ c 2 M m c 2 ω e

Los límites de integración son los de la energía del electrón: el mínimo corresponde a la masa en reposo, mientras que el máximo está dado por,     2          2 m c − m c, donde debemos

n       p

recordar que el neutrón se encuentra en reposo.

La evaluación de la ec. (4.62), debe hacerse en forma numérica. Los valores de las constantes que necestitamos para ello están en el Apéndice E, excepto por cV y cA, cuyos valores se dieron más arriba. De la evaluación de la integral obtenemos, τ ˜ β = 905 s, que constituye un muy buen resultado teniendo en cuenta que el valor experimental resulta, τ exp = 881,5 ± 1,5 s.

β

Antes de terminar, vale la pena discutir el modo en que se extrae el valor de la vida media del decaimiento del neutrón en forma experimental. Para ello, en la Fig. 4.3, mostramos los valores de dΓβ /dE − e, como una función de la energía del electrón, E − e. Lo que mostramos en la figura resulta de nuestro modelo teórico. Pero este espectro puede ser medido y su integración nos permite obtener el valor experimental de dicha vida media.
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Figura 4.3: Predicción teórica del espectro de electrones para el decaimiento β del neu-trón.

 

4.4.    Conclusiones

En este capítulo llevamos adelante un cálculo de la vida media del neutrón libre. El neutrón no es una partícula estable y luego de algunos minutos decae en un protón, un electrón y un antineutrino. El modo en que calculamos la vida media es por medio de la Regla de Oro de Fermi. Naturalmente, debemos pedir que se conserve la energía y la cantidad de movimiento. Junto a esto, el núcleo central del cálculo, es el de un elemento de matriz. En forma simple, este elemento de matriz al cuadrado nos da la probabilidad de decaimiento. El elemento de matriz parte del estado inicial, que es el neutrón y tiene como estado final, el de las partículas finales. La interacción que induce la transición, es la interacción débil. Si bien nuestro cálculo es algo esquemático, el valor obtenido es similar al experimental.

Una vez calculada la vida media del neutrón libre, una duda válida es por qué un neutrón libre decae en algunos minutos, mientras que los neutrones en el núcleo de un
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átomo, como el de 4He, son estables. Para responder a esta pregunta, debemos revisar nuestro cálculo y ver qué cambia al pasar del estado libre, al ligado de un núcleo. En esta última oración, tenemos la primera clave de nuestro problema: ahora los neutrones, al igual que los protones, están ligados y por lo tanto, su función de onda es la de un estado ligado. Además, ya existen protones en el sistema. Cuando el neutrón intenta decaer, el protón producto del decaimiento debe ocupar un nivel cuántico diferente al de los otros protones existentes; ya que el Principio de Pauli le impide lo contrario. Dicho de otro modo, el espacio de fases de protones, inhibe el decaimiento porque dos protones no pueden tener los mismos números cuánticos. En resumen, la enorme diferencia entre un neutrón libre y uno ligado, resulta de las funciones de onda de las partículas involucradas, junto al Principio de Pauli. El neutrón no puede decaer, si la energía disponible solo le permite al protón ocupar un nivel que ya está ocupado. Lo cual no ocurre para un neutrón libre.

Un nivel diferente de sofisticación, es el de partículas en un medio estelar. En ese caso, al calcular el elemento de matriz de la transición, debemos tomar en cuenta el modo en que el medio modifica las propiedades de las funciones de onda; al igual que en el caso de un núcleo descrito en el párrafo anterior. Gráficamente, denominamos “materia estelar”, al medio formado por el material de una estrella de cualquier tipo. Imaginemos a una estrella de neutrones. Una estrella de neutrones no es un núcleo muy grande. Por definición, un núcleo es un sistema hadrónico ligado por la interacción fuerte. Una estrella de neutrones está ligada por la interacción gravitatoria. Dicho esto, en el Cap. 2, mostramos una introducción sobre el tema de la materia estelar. Para el lector interesado, la suma de lo discutido en aquel capítulo y este mismo, permite llevar adelante cálculos de reacciones relevantes en una estrella.
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El algoritmo de Shor en la

computación cuántica

 

Introducción

RSA. Es una sigla que la mayoría de las personas probablemente nunca haya leído, pero para quienes trabajan en la encriptación de información es imposible no conocerla. La sigla representa las iniciales de tres apellidos (Rivest, Shamir y Adleman), quienes desarrollaron un sistema criptográfico de clave pública, que utiliza la factorización de números enteros. La encriptación de la información se podría decir que nació con la civi-lización misma. Sin embargo, nos interesamos en la encriptación electrónica de la misma, a partir del desarrollo de Internet. El desarrollo y las implicancias de la encriptación de la información, se nutre de tantas disciplinas que resulta arriesgado nombrarlas por temor a omitir alguna. Claramente, es un tema matemático. Su implementación solo es de uso práctico gracias a la informática. La informática es posible gracias a los desarrollos en la física de la electricidad y del estado sólido (en particular, la electrónica). Su existencia tiene profundos efectos sociales, pues permite, por ejemplo, realizar todas las opera-ciones bancarias que antes se hacía en forma personal, junto a otros cientos de acciones (compras, reservas de viajes, etc.). Esto modifica los hábitos de las personas, dejando más tiempo libre, etc.

Naturalmente, existen muchas formas de encriptar la información y el mecanismo designado como RSA es importante, aunque existen otros. Nos interesamos en este modo
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particular de encriptar la información, pues es introductorio al algoritmo de Shor, que es un mecanismo que potencialmente sería capaz de encriptar y desencriptar información empleando una eventual computadora cuántica. Siempre que transmitimos información encriptada, nuestra duda es cuán probable es que alguien no deseado logre desencriptar la información. En este punto, el lector debería intuir que si este conocimiento fuera abarcable en un capítulo de un libro para no–especialistas en encriptación, deberíamos comenzar a preocuparnos por nuestra información. Entonces, sin perder de vista que nuestro análisis es muy limitado, podemos afirmar que para cierto tipo de encriptación, la capacidad de descifrar la misma, depende de la capacidad de nuestro sistema informático para separar en factores primos un número entero muy grande. Cuando tenemos números pequeños, el separarlos en factores primos es trivial. Pero para números grandes el tiempo de cómputo requerido puede ser muy grande. Una eventual computadora cuántica haría el trabajo en forma rápida. Solo podemos especular con el impacto social que causaría el que solo unos pocos cuenten con computadoras cuánticas que serían capaces de desencriptar cualquier información, menos las de otras computadoras cuánticas. Bueno, por ahora eso pertenece más bien al terreno de la ciencia ficción.

En este capítulo daremos algunos elementos de encriptación de la información, con el fin de motivar el esfuerzo para comprender al algoritmo de Shor. Dicho algoritmo fue desarrollado para una eventual computadora cuántica. Para comprender el mismo, debe-mos saber mecánica cuántica y es por ello que lo discutimos en este capítulo; pues de tener éxito, las aplicaciones de la mecánica cuántica se expanderían sobre campo com-pletamente nuevo. La referencia principal de este capítulo, es el artículo de Gerjuoy [13]; tomamos también algunos elementos del libro de Rieffel y Polak [14]. Por otra parte, debemos señalar que todos los números en este capítulo están en base 10.

5.1.    Encriptación empleando el algoritmo RSA

Los elementos matemáticos para llevar adelante este capítulo, no son particularmente difíciles, pero son poco frecuentes para la mayoría de nosotros. Es por ello que debemos comenzar por dar una lista de definiciones y propiedades matemáticas, que sirvan como una especie de glosario, para luego seguir adelante. Organizamos esta sección en sub– secciones con ese fin.
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5.1.1.    Nomenclatura y elementos matemáticos

Comencemos con algo de terminología del tema, aunque no necesariamente em-plearemos todos los términos:

encriptar: proceso de protección de información o datos, mediante modelos matemáti-cos para mezclarlos de tal manera, que solo aquellos que tengan la clave para descifrarlos puedan acceder a él;

mensaje: el mensaje que deseamos enviar, no encriptado;

criptograma: el mensaje encriptado;

llave: la información o sistema empleado para desencriptar un criptograma;

aritmética modular: es un conjunto de métodos que permiten la resolución de problemas sobre números enteros;

números coprimos (números primos entre sí o primos relativos): son aquellos números enteros a y b, cuyo único factor en común 1. Dos números primos difer-entes son coprimos, pero también aquellos números no–primos, que no tienen un común divisor más allá del 1. Por ejemplo: 10 (=2.5) y 21 (=3.7);

registro cuántico: dado un sistema de n–qubits, el registro cuántico es la función de onda mezcla que construimos. Aún con solo un qubit y pensando en que trabajamos con un sistema de dos niveles (por ejemplo, spin up y spin down), el registro cuántico es nuestra función de onda; puede ser up, down o un estado mezcla15.

Pasamos ahora a algunas propiedades matemáticas.

15 Quizá esta sea una de las pocas ventajas que tenemos al ver este problema de encriptación cuántica,

partiendo de un curso de mecánica cuántica: si buscan el término “registro cuántico”, verán un concepto algo confuso, producto de tener que explicar algo cuántico asumiendo un conocimiento débil de la mecánica cuántica.
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Relación de congruencia: a y b se encuentran en la misma “clase de congruencia” módulo n, si el resto de a/n y b/n es el mismo. En forma equivalente, si a − b es un múltiplo de n. Esta relación se escribe empleando la llamada notación de Gauss, como,

a = b (mod n), (5.1)

y se lee: “a es congruente con b, módulo n”. Ejemplos: 73 = 53 (mod 10); ó 22 = 1 (mod 7).

Función ϕ de Euler: si n es un entero positivo, ϕ(n) se define como la cantidad de enteros positivos menores a n y coprimos con n. Por ejemplo, ϕ(7) = 6, ya que 6, 5, 4, 3, 2 y 1 (en total, seis números), son coprimos con 7. Algunas propiedades de la función ϕ de Euler:

1. Si p es primo, entonces, ϕ(p) = p − 1.

2. Si                                                      k              k−1 p es primo y k es un número natural, entonces, ϕ ( p ) = ( p − 1) p.

3. Si m y n son coprimos, entonces, ϕ(mn) = ϕ(m)ϕ(n).

Teorema de Euler: daremos dos enunciados equivalentes.

Primer enunciado:

“Si                                         ϕ(n) a y n son enteros coprimos, entonces a − 1 es exactamente divisible por n”

Segundo enunciado:

“Si                                         ϕ(n) a y n son enteros coprimos, entonces a = 1 (mod n).”

Ejemplo:                                                          2 a = 5 y n = 3 , que son coprimos. Tenemos que ϕ (3) = 2 ; 5 − 1 = 24, que es divisible por 3.

Exponenciación modular: calcula el residuo cuando un número entero positivo b (la base) se eleva a la                                      e e-ésima potencia (el exponente), b, y es dividido por el entero positivo m, llamado módulo. En notación matemática, dada la base b, el exponente e, y el módulo m, la exponenciación modular c se escribe:

c    e = b (mod m).                          (5.2)

Por ejemplo, dado 3  b  = 5,  e  = 3, y  m  = 13, la solución,  c  = 8, es el resto de dividir  5

por 13.
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5.1.2.    Un mensaje como un número entero

Transformar un mensaje en un único número es trivial. Eso implica una cierta en-criptación, pero es demasiado simple y muy fácil de decodificar. Sin embargo, para encriptar realmente un mensaje, el primer paso consiste en transformar las letras, los signos y los espacios, en números. Una alternativa para ello es emplear el código ASCII. En esta subsección seremos más modestos y ofreceremos una forma más reducida, pero propia.

Cuadro 5.1: Código numéricos para las letras del alfabeto castellano moderno.

a=10   j=19   r=28   A=37   J=46   R=55 b=11   k=20   s=29   B=38 K=47   S=56 c=12   l=21   t=30   C=39   L=48   T=57 d=13 m=22 u=31 D=40 M=49 U=58 e=14   n=23   v=32   E=41   N=50   V=59 f=15   ñ=24   w=33   F=42   Ñ=51 W=60 g=16   o=25   x=34   G=43 O=52   X=61 h=17   p=26   y=35   H=44 P=53   Y=62

i=18   q=27   z=36   I=45   Q=54   Z=63

 

Esto lo hacemos en los cuadros 5.1 y 5.2. No empleamos el código ASCII, pues varios caracteres tienen tres dígitos y eso hace más grande el mensaje, una vez traducido en un único número entero. Del cuadro 5.1, si queremos escribir “Uno”, tenemos: 582325 (58-23-25). Por otra parte, del cuadro 5.2, si queremos escribir el número 23, resulta: 0203. Nos sobran números de dos dígitos para agregar más caracteres, como signos de puntuación, etc. En realidad, fabricamos este código con fines puramente didácticos y sería algo ambicioso ir más allá. Aún así, vale la pena asignarle un nombre. Usar “código Observatorio”, sería excesivo y expuesto a muchas críticas. Emplear el nombre del autor, sería inmodesto. Lo vamos a designar como “código AMC”, donde AMC es la sigla para Asignatura Mecánica Cuántica. Algo restringido a nuestra propia asignatura suena razonable.

Como un ejemplo algo más elaborado, tomando los cuadros 5.1 y 5.2, escribamos
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Cuadro 5.2: Algunos elementos adicionales para la escritura. En el cuadro los dígitos (0, 1, 2, 3, 4, 5, 6, 7, 8 y 0), se representan por i. Por ejemplo el cero se escribe 00, el uno por 01, etc.

i (dígito)        = 0i

espacio        = 99

punto (.)       = 91

punto y coma (;) = 92

dos puntos (:)    = 93

@      = 94

á/Á        = 74/75 é/É        = 76/77

í/Í             = 78/79

ó/Ó       = 80/81 ú/Ú       = 82/83

 

como un número entero el siguiente mensaje:

5025991423301823132591

El lector puede traducir esto en palabras o bien leerlo a pie de página16. Debemos enfatizar que elegimos los números para asignar dos cifras a cada carácter. En primer lugar lo descomponemos como,

50-25-99-14-23-30-18-23-13-25-91

y con los cuadros 5.1 y 5.2, lo traducimos a palabras. Es relativamente simple escribir un programa que traduzca en palabras un mensaje (que consta de un solo número entero, claro). Para ello, se puede dividir por 100 y separar la parte entera de la decimal. La parte decimal es multiplicada por 100 y luego el programa reemplaza el número por la letra o carácter. Los cuadros 5.1 y 5.2, suman un máximo de 100 caracteres diferentes, lo cual permite dimensionar un vector “C” (por código), tal que C(n) nos de el código. Por ejemplo, C(77)=É. Una vez que tenemos el primer carácter, con el entero que nos

16 El mensaje dice: “No entiendo.”
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quedó al tomar la parte entera (con dos dígitos menos que el original), dividimos por 100 y repetimos el proceso. Si al finalizar, nos queda un carácter de un solo dígito, el programa debe asumir que el dígito faltante es el cero. Se pueden seguir diferentes esquemas para pasar de un texto con letras y caracteres a un único número entero, pero no abordaremos ese punto.

En resumen, en esta subsección mostramos una forma para traducir en un número entero, un mensaje de texto. Pudo reducirse a afirmar que esto se puede hacer empleando la numeración del código ASCII. Pero elegimos construir el código AMC y mostrar su empleo, ya que solo empleando los conocimientos, se los comprende acabadamente.

En las subsecciones siguientes, mostramos cómo encriptar un número entero por medio del algoritmo RSA. Como ya habíamos mencionado, el traducir un texto en un único número entero es ya una cierta encriptación. Pero para un experto, sería fácilmente desencriptada. El modo más simple, es que quien busca desencriptar el mensaje logre hacerse del número y un mensaje desencriptado, que usará como “Piedra Rosetta” para descifrar el mensaje. Pero aún solo con el número, se buscan patrones, las letras más probables y cómo se repiten los números en el mensaje, etc., que eventualmente permiten su desencriptación. El problema de estos métodos de encriptación, es que si se logra descifrar la llave (o clave), a partir de ese momento se descifra el código. Veremos que el método RSA, posee dos claves, una para quien envía el mensaje y la otra para quien lo recibe, lo cual dificulta considerablemente su desencriptación.

5.1.3.    Resumen del algoritmo RSA

Por algún motivo, cuando para estos temas deben elegirse nombres de dos personas, siempre se escogen “Alice” y “Bob”. Seremos más breves y emplearemos dos personas designadas como “A” y “B”. Hagamos una síntesis del método, donde B le envía a A, un mensaje. El mensaje original es M. En primer lugar, este mensaje es transformado en un número entero m, de acuerdo con lo visto en la subsección anterior. Este número m, debe ser menor a otro número n, que discutiremos enseguida; junto a otros dos números, e y d, que son datos, pero aún no explicitamos. Antes de enviar el mensaje, éste es codificado en un número c, mediante la siguiente operación,

c     e = m (mod n).                         (5.3)
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El mensaje original m, fue ahora encriptado y se transmite c, de B a A. Cuando A recibe el mensaje, lo desencripta por medio de,

m   d = c (mod n).                    (5.4)

La operación de encriptación y desencriptación no debe ser subestimada. En la ec. (5.3), sabemos el valor de m, e y n, y debemos resolverla para calcular c. Dado el valor de los exponenciales puestos en juego, el hallar c, no es nada sencillo. En forma análoga para la desencriptación, para resolver la ec. (5.4), sabemos el valor de c, d y n, y debemos hallar el mensaje original m. Más allá de este problema numérico, nos adelantamos a escribir que e es una clave pública, mientras que d, es la clave privada que solo el receptor A, conoce.

5.1.4.    Generación de claves

1. Se eligen dos números primos distintos, p y q (por conveniencia, no deben diferir

en mucho; pueden tomarse números primos contiguos).

2. Se calcula n = p.q, pediremos que el mensaje m, cumpla con m < n, lo cual

establece una restricción en la elección de p y q.

3. Se calcula la función de Euler ϕ(n). Como n = p.q y p y q son primos, el cálculo

de esta función es simplemente, ϕ(n) = (p − 1)(q − 1).

4. Se elige un entero positivo e, menor que ϕ(n) y que sea coprimo con ϕ(n).

5. Se determina un d, por medio de la ecuación, e.d = 1 (mod ϕ(n)).

De esta manera, ya tenemos las claves públicas (n, e) y la clave privada d.

5.1.5.    Cifrado y descifrado

En primer lugar B, tiene un mensaje M, que introduce en su sistema informático. El algoritmo que tiene tal sistema, transforma el mensaje M, en un número entero, m. Luego, construye las siguientes cantidades según el esquema de la Sec. 5.1.4: n, e y d. Antes de ser enviado, el sistema encripta el mensaje m, por medio de,

c     e = m (mod n).
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Entonces, trasmite c, junto a la información de n.

El individuo a quien va destinado el mensaje, en nuestro caso A, solo debe conocer la clave d, pues la clave n que es necesaria para la desencriptación, es pública y por lo tanto puede ser transmitida por el sistema en forma abierta, como acabamos de explicar. Para que A, conozca su clave d, se pueden recurrir a diferentes mecanismos. Noten que cuando uno necesita una clave para operar con una tarjeta de débito, por ejemplo, hay que ir a un cajero y realizar la operación de ’generar una clave’, donde en realidad lo que uno hace es cambiar la clave, pues la primera es dada a veces en forma física, junto con la tarjeta. Como sea, esta clave no puede ser enviada por el sistema, pues generaría una falla de seguridad. Alguien puede objetar que d se obtuvo en forma única del punto 5, de la Sec. 5.1.4, mientras que las claves personales se general a elección del interesado y se pueden cambiar. Esa clave que elegimos, es más bien la llave de entrada a la información donde está guardada d.

Volvemos a nuestro problema. El receptor del mensaje A, posee su clave d, que coloca en su sistema para poder leer el mensaje. El sistema posee la información de c y n, y además, A le da la información de d. Con toda esta información, el sistema resuelve,

m   d = c (mod n),

y luego, transforma m en M, con lo que concluye el proceso.

Debemos advertir al lector que el cálculo numérico de las ecs. (5.3) y (5.4), es com-plejo pues involucra potencias muy grandes. Para ello se recurre al método de la expo-nenciación modular, ya nombrado. El lector interesado, puede encontrar una descripción del método en el Apéndice A, del artículo de Gerjuoy [13].

 

5.2.    El algoritmo de Shor

El nivel de dificultad que implica comprender acabadamente el algoritmo de Shor es alto, pero aún así, es accesible para quien ya haya hecho un curso de Mecánica Cuán-tica. Sin embargo, para alcanzar tal nivel de comprensión, se requiere de un número muy grande de propiedades tanto matemáticas, como físicas; lo cual excede el objetivo de este seminario. El objetivo que perseguimos entonces, no es agotar el tema del al-goritmo de Shor, sino mostrar cómo la Mecánica Cuántica es aplicable a un problema
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matemático. Debemos notar que, hasta ahora, empleamos la mecánica cuántica para explicar un sistema físico que requiere de una descripción cuántica. Para el algoritmo de Shor, emplearemos la respuesta de un sistema cuántico para resolver un problema numérico.

Es importante notar que una computadora, cuántica o no, es un sistema físico. Co-mo tal, está sujeta a fluctuaciones debido a cambios en la temperatura, movimientos, alteración de los materiales por el paso del tiempo y las condiciones de presión, humedad y temperatura, fluctuaciones en la alimentación (electricidad), etc. El que una computa-dora (no cuántica), arroja siempre el mismo resultado ante el mismo proceso, es gracias a un proceso de realimentación y verificación continua diseñado para obtener tal com-portamiento. En otras palabras, se repite el proceso para comparar con el anterior y se sigue repitiendo el mismo proceso hasta obtener consistencia con el resultado obtenido. El obtener lo mismo en una computadora cuántica es extremadamente más complica-do. Veremos que el algoritmo de Shor no supone una computadora ideal, sino que está diseñado para su implementación en un caso real.

Esta sección está organizada de la siguiente manera: en primer lugar, mostraremos un modo de factorizar un número, que es particularmente conveniente para el com-portamiento cuántico. Luego, discutiremos un conjunto de pasos que constituyen el algoritmo de Shor en sí.

5.2.1.    Factorización de N = p.q

Sea n, un entero positivo, coprimo con N = p.q, donde p y q, son dos números primos diferentes, mucho mayores que 1. Conocemos N y como se trata de un número grande, es extremadamente difícil saber sus factores primos p y q. Sobre el número n, lo elegimos nosotros. Cómo lo elegimos nosotros, lo podemos escribirlo como el producto de números primos, dividimos N por cada uno de esos números primos para garantizar una división no exacta y por lo tanto, el carácter de coprimo entre n y N .

Construimos ahora una función fj, con j = 1, 2, 3, .... Esta función, toma como valores el resto de la división   j n /N. De esta manera, f queda unívocamente definido

j

por medio de,

nj = f (mod p.q), (5.5)

j
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junto a la condición 0 < fj < N. Por otra parte y a partir del Teorema de Euler, tenemos que para cualquier n,

nφ(N)      (p−1)(q−1) = n = 1 (mod p.q),                     (5.6)

al comparar con la ec. (5.5), tenemos que,

fφ(N) = 1,      ∀ n.

Sin embargo, para un dado n, puede existir un entero j, 1 ⩽ j ⩽ φ(N ) = (p − 1)(q − 1), para el que fj = 1. El menor de todos estos j, lo llamamos r. Decimos que r es el orden de n módulo p.q, de este modo,

nr − 1 = 0 (mod p.q). (5.7)

Supongamos ahora que conocemos el orden r de un entero n < N , coprimo con N , y además, que r es par. Nota: el procedimiento para conocer r es justamente el algoritmo de Shor, que explicaremos más adelante. Volvamos al r par. Como es par, entonces r/2 sigue siendo entero. El carácter de par de r no implica ninguna restricción sobre N , pues dĳimos que p y q, son números grandes. Claramente,

n r            r/2          r/2 − 1 = ( n − 1)( n + 1),

de esta manera,

( r/2          r/2 n − 1)( n + 1) = 0 (mod p.q).                      (5.8)

Ahora bien, por definición r es el menor entero que cumple con la condición de que nr − 1, sea exactamente divisible por p.q. Luego, teniendo en cuenta que la definición de                                                         r/2 p y q es arbitraria, podemos decir que p divide exactamente a n − 1 y q divide exactamente a r/2 n + 1). Finalmente, p y q se pueden determinar calculando el mayor común divisor de         r/2                      r/2 N con n − 1 y de N con n + 1. Esto es, si conocemos r, sabemos cómo factorizar N . El encontrar este mayor común divisor con una computadora clásica es considerado como un problema simple, en comparación con la factorización de un número muy grande [13]. Nos referimos a que tal operación no justifica el uso de una potencial computadora cuántica.

Antes de seguir, debemos mencionar una propiedad importante de la función f j . La misma, dado un n y un N (n < N , y n y N coprimos entre sí), es periódica en r. Dicho de otro modo, fj es periódica y su período resulta ser el r que necesitamos.
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La síntesis de esta subsección, es que la dificultad mayor para factorizar un número N muy grande es encontrar un r que cumpla ciertas propiedades. En primer lugar, N es el producto de exactamente dos números primos p y q (∴ N = p.q). Sobre el n, debe cumplir con que n < N (lo cual es trivial); pero además n y N deben ser coprimos entre sí y el r que resulta, debe ser par. El n se elige por prueba y error. Si resulta una elección afortunada, entonces   r/2           r/2 n − 1 y n + 1, son exactamente divisibles por p y q, respectivamente. Notemos que p y q, son nuestras incógnitas, luego el afirmar cuál es divisible por cuál, es arbitrario.

5.2.2.    Implementación del algoritmo de Shor

Nuestro objetivo final es lograr factorizar un número muy grande N , en el marco del algoritmo de Shor. Esto lo hacemos empleando la factorización descrita en la Sec. 5.2.1. Para ello, necesitamos conocer el valor de r. Es este número r, el que se puede evaluar en forma más eficiente empleando una potencial computadora cuántica y es el objetivo de esta sección. Como cualquier procedimiento de cálculo, explicaremos el procedimiento enumerando los pasos a seguir. No debemos perder de vista que este es un problema interdisciplinario, donde matemáticas, teoría de la información y mecánica cuántica, juegan un papel importante. Cada disciplina tiene su vocabulario propio y es justo tratar de seguir el de la teoría de la información, pues es su objeto de estudio por excelencia. Expresado nuestro deseo, en varios puntos emplearemos la terminología de la mecánica cuántica, ya que el capítulo va dirigido a los estudiantes de esa asignatura.

Como mostramos en el Cap. 15, en [1]; la idea básica de la computación cuántica es construir una función de onda, con un número establecido de qubits. Luego, por medio de operadores unitarios, que en el lenguaje de la teoría de la información se denominan “puertas cuánticas”, modificamos a la función de onda para que sirva a nuestro proble-ma. Finalmente, medimos la función de onda y de la información que extraemos de su colapso, tenemos la respuesta buscada. Ese es el esquema que desarrollaremos ahora. Como ya lo habíamos advertido, daremos una descripción esquemática, donde omitimos las demostraciones intermedias. El lector puede encontrar un esquema completo en los artículos originales de Shor [15, 16], el artículo de Gerjuoy [13], el libro de Rieffel y Polak [14] y en las referencias ahí citadas. El esquema, es entonces:
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1. Determinación del número mínimo de qubits necesarios. Debemos construir el

estado cuántico adecuado para resolver nuestro problema. El punto de partida es decir el número mínimo de qubits que necesitamos. Para ello, debemos saber hasta qué valor de la potencia j debemos llegar para analizar el período de fj (y por lo tanto, conocer r). Del análisis numérico [13], resulta que el número de qubits necesario, que designamos como y, es del orden de,

y ∼     2 = ( Log N) + 1. 2

Como ejemplo, si         30 N ∼ 10, entonces y ∼ 200.

2. Preparación de la función de onda inicial. Tenemos entonces y–qubits y empleare-

mos el subíndice                                                    17 Y , para designar nuestro sistema físico de y –qubits. En la Sec. 15.3.2 en [1], vimos que un estado puro formado por un qubit, se escribe como,

|ii,       con i = 0 ó 1;

para un estado mezcla, tenemos,

|                                           2      2 ψ i = α | 0 i + β | 1 i , con α + β = 1,

mientras que un estado puro formado por varios qubits es de la forma,

|0, 1, 1, ..., 1, 0, ...i.

Esta última notación es la más simple, si damos toda la información física para nuestro estado. Si tenemos y  y  qubits, el número de estados diferentes es de  2  .

Podemos simplificar la notación al precio de tener que establecer una tabla de equivalencias, llamando,

|0i ≡ |0, 0, 0, ..., 0, 0, ...i,

luego,

|1i ≡ |1, 0, 0, ..., 0, 0, ...i, etc.

17 Es conveniente indicar que en el artículo de Gerjuoy [13], se afirma erróneamente que Y es el

registro cuántico, lo cual induce a una confusión en la interpretación. Sin embargo, el desarrollo es correcto, si simplemente ignoramos la presencia de ese Y en las expresiones.
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De esta manera, una base de nuestro espacio de Hilbert, se puede escribir como,

|                                    y j i , con j = 0 , ... , 2 − 1,

donde el índice                y j llega hasta 2 − 1, ya que elejimos partir de j = 0, en lugar de 1. En este caso, el estado mezcla más general, se escribe de la forma,

|ψi = P y           cj |j i. 2 − 1 | c | 2 j 1      2y−1 X

=0    j    j=0

Dada toda esta información, ahora sí mostramos el estado cuántico relevante a nuestro problema.

Debemos tener en mente que una potencial computadora cuántica es un sistema físico, sobre el que debemos actuar físicamente para obtener un resultado. El estado inicial solo puede ser el estado fundamental del sistema, esto es, aquel estado con menor energía. Es el único estado que podemos preparar sin mayor dificultad. Sobre este estado actuaremos con puertas cuánticas, hasta alcanzar el estado final que mediremos para obtener el resultado final. Haremos esto por pasos, colocando un superíndice P 0, P 1, P 2, ... , para cada paso. En los estados y por conveniencia, agregamos un subíndice Y , para recordar que nuestro sistema físico es aquel formado por y–qubits. Así, partimos del estado,

|    P 0 ψ i = |0i Y        Y ,

donde dejando de lado los índices, |0i = |0, 0, 0, ... , 0i. Actuando sobre este estado por medio de un conjunto de puertas cuánticas, pasamos al siguiente estado,

1   2y−1 X

|    P 1 ψ i =            |ji ,                           (5.9) Y                   Y y/ 2 2

j=0

Esto es, en el primer paso construimos un estado donde cada |ji, tiene el mismo

peso.

3. Elegir un n; y para cada j en el sistema Y , entrelazar un estado |fj i perteneciente a

un nuevo sistema Z . Este es quizá el punto más relevante y difícil del algoritmo de Shor. El primer punto, elegir el valor de n, es relativamente simple. Conocemos N y sabemos que es producto de dos números primos muy grandes. El buscar un n < N , comprimo con N , se puede hacer multiplicando números primos relativamente
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pequeños, lo cual hace extremadamente poco probable que no resulte comprimo con N . Luego, entrelazamos nuestro sistema físico de y–qubits, con otro sistema nuevo de qubits, que llamaremos Z, tal que las configuraciones de este nuevo sistema estén formadas de la siguiente forma: dado un                   P 1 | j i , del estado | ψ i, en la

Y

ec. (5.9), habiendo elegido ya el n, construimos una configuración |fji. Recordemos la ec. (5.5):

nj = f (mod N ).

j

De esta manera, tenemos un nuevo estado, dado por,

1   2 y−1 X

|    P 2 ψ i =            |ji   f Y Z                    Y    j Z y/ | i.                       (5.10)

2 2 j=0

Debemos notar que el número de qubits de Z, es menor que el de Y , ya

que la función fj es periódica, con período r. Esta afirmación es válida en tanto y > r, esto es que el sistema Y , posee más qubits que la periodicidad de f j . El lector debe intuir que la implementación del estado     P 2 | ψ i , a partir del estado

Y Z

|    P 1 ψ i, es extraordinariamente complejo: debemos poner en contacto dos sistemas

Y

cuánticos, Y y Z , entrelazados cuánticamente de modo de obtener los productos |jiY |fjiZ, pero al mismo tiempo permitir que el sistema Z, se pueda medir en forma independiente del sistema Y . Una idea conceptualmente similar se discutió con la teletransportación cuántica en la Sec. 15.3.4, en [1]; donde un sistema de tres partículas entrelazadas, se divide en dos y se mide uno de los dos subsistemas.

En este trabajo, aceptaremos la ec. (5.10), sin demostración. Encontramos en

la literatura una discusión conceptual pobre de la ec. (5.10). Estos trabajos fueron hechos en el marco de la teoría de la información y la dificultad de esta ecuación estriba en el entrelazamiento cuántico, uno de los puntos más complejos de la mecánica cuántica. Es más, en general se nombra al entrelazamiento cuántico en forma genérica, pero no se discute en forma directa. La clave de la ec. (5.10), es lograr el entrelazamiento entre el sistema Y y el sistema Z, con el fin de transmitir cuánticamente la información sobre la periodicidad de fj, que es nuestro buscado r; del sistema Z, al sistema Y . Expondremos esto, en los puntos siguientes.

Como ya afirmamos, no discutiremos la metodología para obtener el estado

|    P 2 ψ i (ec. 5.10). Otro punto de enorme relevancia y también puramente cuán-

Y Z

tico, es que este estado se construye a partir del estado     P1 | ψ i, sumando qubits,

Y
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empleando puertas cuánticas y con el conocimiento de n y N , pero hasta medirlo, no conocemos las configuraciones |f j iZ, ya que estaría implícito el valor de r. Desde el punto de vista cuántico, esta no es ninguna sorpresa; pero el tema es complejo y la escritura de la ec. (5.10), puede inducir a un error. Sabemos que por la acción descrita, obtenemos dicho estado, pero hasta medir no podemos afirmar nada sobre las configuraciones del mismo.

4. Medida del sistema Z. Como en el caso de la teletransportación cuántica, medimos

ahora el estado de las partículas del sistema Z. Por construcción, sabemos que existen r–configuraciones |fj i. Al medir, produciremos el colapso de esa parte del estado entrelazado completo y obtendremos algún |fki. Recordemos que fj es una función periódica y por lo tanto, existen varias configuraciones |ji del sistema Y , que fueron multiplicadas por la misma configuración |f ki. Para ser claros, si escribimos |kiY |fkiZ, entonces |ki es uno de ellos. Llamemos Q, al número de configuraciones |ji, que estaban multiplicadas por |f ki. Entonces, luego del colapso de la parte del estado que representa al sistema Z, tenemos el siguiente estado,

|    P           Q−1 X 3 − 1 / 2 ψ i = Q |k + b ri                    (5.11) Y Y .

b=0

Al medir el estado del sistema Z , conocemos un valor de f j , que llamamos

arbitrariamente fk. Pero no podemos saber el valor de k, pues varios fj , tiene el mismo valor debido a su periodicidad. Sabemos que debe existir un Q, que representa al número de configuraciones |j iY , que comparten el mismo valor de f                                   P 3 . Sobre esa base, escribimos el estado | ψ i. Como no conocemos el valor de k,

k                                            Y

nada nos impide afirmar que es el menor de los enteros de la suma y representar a la suma sobre configuraciones tal y como está escrita.

5. Realizar la transformada de Fourier cuántica sobre el estado del sistema. Este

paso, requiere de la operación de una puerta cuántica sobre último estado del sistema    P 3 | ψ i, ec. (5.11). Llamamos al operador (o puerta cuántica), que realiza

Y

tal operación ˆ UT F , y su acción viene dada por,

U ˆ                       y 2 πijc/ 2 1   2y−1 X T F     Y                                Y y/ | j i = e | c i .                      (5.12) 2 2 c =0
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Para evitar confusiones, en el exponencial las letras j y c, son índices que

√

indican configuraciones cuánticas, mientras que i =    −1. Realizando ahora la transformada de Fourier sobre el estado    P 3 | ψ i, tenemos,

Y

2y−1 Q−1 X X

|    P                                              y 4 P 3 y − 1 / 2 2 πi ( k + br ) c/ 2 ψ i = ˆ U ψ | i = (2 Q ) e |ci .         (5.13)

Y       T F                                                   Y Y

c=0 b=0

En esta expresión, los coeficientes que multiplican a |ci, representan a un serie

geométrica que se puede sumar, con lo cual tenemos finalmente,

2 y−1                                      y X sen ( πrc Q/ 2)

|    P                          y               y 4 y − 1 / 2 2 πikc/ 2 πirc ( Q − 1) / 2 ψ i = (2 Q ) e e                 |ci .      (5.14) Y                                                                Y y sen ( πrc/ 2 ) c =0

6.                         P 4 Medida del estado | ψ i. Al medir este estado, obtendremos algún |ci, con una

Y

probabilidad de,

sen 2            y ( πrc Q/ 2)

P     y    −1 c                     2 = (2 Q )           .                     (5.15)

sen        y ( πrc/ 2)

Una de las mayores dificultades para abordar un tema interdisciplinario, como

lo es un algoritmo cuántico, es que quien escribe muy probablemente esté o bien corrido hacia la informática o bien corrido hacia la mecánica cuántica. La totalidad de los trabajos en que se basa este capítulo, son de carácter informático. Nuestro capítulo, sin embargo, apunta al otro enfoque. Desde el punto de vista mecánico cuántico, sabemos que la probabilidad Pc en la ec. (5.15), no resulta de una única medida. La probabilidad de obtener una cierta configuración, se obtiene luego de un número muy grande de medidas. De hecho, la cantidad Pc es exacta en el límite para un número de medidas que tiende a infinito. Este punto, muy obvio para un curso de mecánica cuántica elemental, parece ignorarse en las publicaciones sobre el tema.

Existe otro punto, mucho más sutil y complejo, que se pudo discutir en el

punto 3, pero preferimos postergar hasta ahora. En el punto 3, construimos un estado entrelazado cuyas configuraciones son de la forma |jiY |fjiZ . Esto implica una cierta relación numérica entre las configuraciones |jiY y |fj iZ. El punto que muchos lectores pueden haber olvidado, es que el número “j ” ó “fj ”, en cada ket, no tiene ningún contenido físico. En realidad es un índice que debe ser asociado con una tabla para traducirlo en estados con spin up o down, por ejemplo. En la construcción de tal tabla, la asignación de números para asignar estados físicos
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reales es arbitraria. Al construir las configuraciones |jiY |fjiZ, los estados físicos de spin up y down, no pueden leer la tabla para adaptarse a ello. Luego, ¿cómo construir tal tabla?. Simplemente es imposible. El lector debe notar, que se afirma “medir” dos veces, una sobre el sistema Z y luego, sobre el Y ; pero no se dice qué se midió. Solo se hace referencia al colapso del estado.

En términos directos, ya dĳimos qué no es; y ahora debemos decir que sí

es. Físicamente, lo que tenemos son dos sistemas cuánticos, que se entrelazan y sobre los mismos se actúa con una serie de operadores. Como resultado de esas acciones, se logra construir un estado cuántico mezcla, cuyos coeficientes de peso, tiene una dependencia con la periodicidad r, que deseamos calcular. Dado Pc en la ec. (5.15), ciertas consideraciones, junto a métodos numéricos, nos permiten extraer el valor de r. La discusión sobre la extracción de r a partir de Pc, no la abordaremos en este trabajo. Extraído el valor de r, concluye el proceso cuántico o algoritmo de Shor.

7. Consideraciones finales sobre el método. Nuevamente, nuestro enfoque es mecáni-

co cuántica. En las primeras clases de un curso de tal asignatura, debe nombrarse que la mecánica cuántica requiere de la física clásica para su construcción: la medi-da es fundamental en mecánica cuántica y un instrumento de medida es un objeto clásico. Notemos que podemos entrelazar dos sistemas cuánticos, pero la acción de poner en contacto un sistema cuántico con uno clásico (el instrumento de me-dida), produce el colapso del estado. Vamos ahora a una computadora cuántica. Para interactuar con el sistema cuántico de tal computadora, debemos emplear una computadora clásica para que prepare el sistema, realice las medidas, las registre, etc. En el algoritmo de Shor, el sistema cuántico no obtiene los factores primos de N , sino que extrae el valor de r. Luego, la computadora clásica hace el resto. No tenemos la certeza de que el r que obtenemos resuelva nuestro problema. Existe cierta probabilidad de error en la elección del n y en el método numérico para extraer r de Pc. Si luego de todo ese proceso, fracasamos en la separación en factores primos de N , deberemos elegir otro n y comenzar todo de nuevo. Esto es inherente a cualquier computadora, ya que a fin de cuentas cualquiera de estos instrumentos son sistemas físicos sujetos a fluctuaciones, que deben ser tenidas en cuenta.
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5.3.    Discusión

Debemos tener en mente que una computadora, clásica o cuántica, es un sistema físico del que obtenemos resultados a partir de la respuesta de tal sistema. Podemos escribir en un papel un operador o puerta cuántica, que tenga tal o cual acción sobre un estado cuántico. Pero luego, alguien debe ser capaz de encontrar algún proceso físico que permita implementar tal acción. La situación es similar para una computadora clásica. Casi todo el mundo las usa, pocos saben programarlas, otros las saben reparar, pero muy pocos comprenden y saben manejar el lenguaje de máquina, esto es, los procesos físicos que rigen su funcionamiento. Aunque son muy pocos quienes comprenden el funcionamiento y fabricación de los procesadores de una computadora, su funcionamiento es producto del trabajo de las personas. Por otra parte, a diferencia de las computadoras clásicas o cuánticas, sabemos muy poco sobre cómo funciona el cerebro. Pero ese es otro tema.

En este capítulo, intuimos el punto de partida de la solución del problema de facto-rizar un número N , producto de dos números primos: el estado de partida es el estado fundamental de un sistema cuántico, formado por varios qubits. Luego aceptamos sin de-mostración, la existencia de puertas cuánticas que actúan sobre ese estado. Estas puertas cuánticas, son operadores unitarios que actúan sobre nuestro estado de partida. En este proceso, entrelazamos nuestro sistema con otro sistema cuántico, realizamos medidas sobre nuestro estado, causando primero un colapso parcial del estado y finalmente, su colapso. No dĳimos qué medimos, pues en realidad existen diferentes implementaciones del sistema de qubits. Si se tratara de un sistema de spin up y down, mediremos la proyección del spin. Al cabo de todo ese proceso y luego del análisis numérico de una probabilidad, se puede obtener un número que indica la periodicidad de una función y con él y una computadora clásica, lograr la factorización de N .

Es verdad que en toda esta discusión sobreabundan puntos que debimos aceptar sin demostración. Sin embargo, debemos notar que abordamos el problema de la física del proceso de computación cuántica desde un punto de vista microscópico. Si con una computadora clásica calculamos Log10(15), al igual que estudiamos cómo de un proceso físico podemos extraer la periodicidad r de una función, tendremos otro proceso físico para conocer dicho logaritmo. Pero eso es algo que en general no estudiamos. Esto
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nos muestra que la computación cuántica se encuentra en la etapa más primitiva de su desarrollo; pues aún no podemos dar por sentada la física básica de la computadora, como sí ocurre con una computadora clásica.

El encontrarnos aún en las primeras etapas de un desarrollo, se ve también reflejado en la literatura del tema. No ahondaremos sobre el siguiente punto, pero existen difer-entes sistemas cuánticos, además del spin, para construir los qubits de una computadora cuántica. La condición es tener un sistema cuántico de dos niveles de energía. También existen diferentes algoritmos, además del de Shor. El enfoque es claramente informático y los conceptos cuánticos son a veces presentados de una manera forzada. Todo esto no debe ser interpretado como una crítica, sino que es inevitable cuando aún se están explorando diferentes alternativas de fabricación, ejecución y programación; sin que una logre dominar sobre las otras.

 

5.4.    Epílogo

Luego de toda esta discusión, debemos indagar sobre la medida en que todas estas expresiones se traducen en una computadora cuántica real. Debemos aclarar que la inversión en esfuerzo humano y económico para el desarrollo de la computación cuántica es significativa. Esto es muy bueno, pues una eventual computadora cuántica podría revolucionar varias disciplinas científicas. La contracara, es que muchas veces los logros son magnificados. En los medios, en forma periódica uno lee una noticia con el repetido “ahora sí” llegó la computación cuántica. Una y otra vez, cada tanto tiempo. Incluida la afirmación de haber construido y vendido una computadora cuántica comercial. Con este párrafo sugerimos al lector que reciba esas noticias con un prudente escepticismo.

En el año 2001, se publicó en la prestigiosa revista Nature [17], un artículo sobre la implementación del algoritmo de Shor, con un sistema de siete qubits, donde fue posible factorizar el número 15. Once años después, se logró la factorización del número 21, publicado en [18]. Más recientemente, en el año 2019, se intentó sin éxito la factorización del número 35. Se argumentó que el fracaso se debió al control de errores [19], un punto que no hemos discutido. Al momento de terminar este trabajo, no encontramos resultados más modernos. Es una triste obviedad que si luego de más de veinte años de labor, solo
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se pudieron factorizar los números 15 y 21, el ritmo de progreso en el área es mucho más lento del esperado. Ahora en primera persona y para expresar mi punto de vista, voy a expresar una analogía para mostrar cómo veo el progreso en el tema. Imaginemos la época en que las personas se movían en carros, carretas, etc., movidas por caballos. Esto es, cuando los móviles (carretas, etc) eran movidos por tracción a sangre. Frente a esto, se propone un móvil autopropulsado por un motor que es parte del móvil mismo; llamémoslo “automóvil”. Haciendo un paralelismo con las computadoras cuánticas, digamos que el primer automóvil logró avanzar 15 milímetros. Once años después, otro automóvil logró avanzar 21 milímetros. Casi veinte años después del primero, falló el intento por avanzar 35 milímetros. Notemos que se pretende factorizar números del orden de 1030 y con el número 35 no se tuvo éxito. Mi punto es que después de más de 20 años del auspicioso inicio, los resultados son demasiados modestos como para afirmar que una computadora cuántica que supere a las clásicas, sea una realidad.

A comienzos de nuestro siglo, nos preguntamos cuándo la computación cuántica comenzaría a inundar los laboratorios del planeta. Hoy, la pregunta es más bien si al-guna vez la computación cuántica inundará los laboratorios del planeta. Existen ciertas variables en la computación cuántica que ignoramos. En primer lugar, una computadora cuántica supone un conjunto de partículas cuánticamente entrelazadas. Dicho de otro modo, un cierto número de qubits. No sabemos cuál es el número máximo de partícu-las cuánticamente entrelazadas. La factibilidad de una potencial computadora cuántica está vinculada a la respuesta a esta pregunta. Esta pregunta debe tener una respuesta, pero no la conocemos aún. Es de esperar que los esfuerzos teóricos y experimentales, la respondan. La siguiente duda se refiere a la pérdida de correlación entre las partículas o decoherencia. Es un fenómeno cuántico que limita el tiempo de uso del sistema con el fin de ser empleado en un cálculo. Son tiempos breves, pero los cálculos lo son aún más. Entendemos que ese tiempo se hace más corto, cuanto más grande es el sistema. Esta es otra pregunta sin responder que está vinculada con la primera. Un tercer punto se refiere al control de errores. Todo esto nos muestra, como ya afirmamos, que la computación cuántica es por ahora una perspectiva muy interesante. Notemos que las computadoras cuánticas existentes justifican su existencia en la perspectiva de logros mayores; pues el costo y las dificultades de funcionamiento aún no las hace rentables, dada su capacidad de cálculo.

 

Facultad de Cs. Astronómicas y Geofísicas   |  UNLP                                                         140


EDUARDO BAUER

 

Algún lector puede especular con que mi postura es de decepción frente a la com-putación cuántica. No es así. De serlo, no hubiera escrito este capítulo. En este capítulo se buscó despertar interés en el tema y especialmente, vincular esta nueva rama del conocimiento con lo que aprendimos de mecánica cuántica. Mi opinión, es que la reali-zación de la computación cuántica requerirá de mucho tiempo y esfuerzo, mucho más de lo que se pensaba hace unos años atrás. Pero el esfuerzo lo vale. La historia del conocimiento, es la historia de este tipo de desafíos. Son extremadamente difíciles. Y es por su dificultad, que nos resultan interesantes y nos atraen. Puede ocurrir que el tamaño del entrelazamiento cuántico y la decoherencia, pongan un límite físico a las computadoras cuánticas y las hagan inútiles (frente a las clásicas). En ese caso, habre-mos aprendido mucho, pero nos quedamos sin las computadoras cuánticas. Pero también puede ocurrir que funcionen. En ese caso, habrá valido la pena el esfuerzo.
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Valor numérico de algunas

constantes de interés

 

En este apéndice, daremos un resumen de algunos valores numéricos de constantes que empleamos a lo largo de este trabajo.

Constantes generales:

|                                      −19 e | = 1 , 602176634 × 10 Coul,

c = 299.792.458 m/s, ~                  −22 = 6 , 582119569 × 10 MeV s,

~c = 197,3 MeV fm

k                  −23 = 1 , 380649 × 10 Joules/Kelvin               (A.1)

B

Masas:

m              2 = 0 , 510998946 MeV/c,

e

m              2 = 938 , 2720813 MeV/c,

p

m              2 = 939 , 5654133 MeV/c.               (A.2)

n

Momentos magnéticos de Bohr:

µ                  −15 = 5 , 7883818012 × 10 MeV/G,

e

µ            ∼        −18 p = µ e m e /m p = 3 , 15245 × 10 MeV/G, µ            ∼        −18 n = µ e m e /m n = 3 , 14811 × 10 MeV/G,           (A.3)
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donde G es la unidad de campo magnético denominada Gauss.

Factores giromagnéticos:

g e   = −1,000, gp   =    2,793, gn = −1,913. (A.4)

Convirtiendo unidades:

G    −    Kg                 MeV 4 ∼ 25 = 10 = 5 , 60951 × 10 ,           (A.5) 2 Coul s Coul s c

Aqui empleamos,

1    ∼        29     2 Kg = 5 , 60951 × 10 MeV/c .

Podemos escribir,

Coul ∼          MeV 25 = 5 , 60951 × 10 ,                (A.6) 2 G s c

de este modo, podemos expresar la carga del electrón como,

|e| = 8,98742 × 10        .                      (A.7) 2 G s c 6   MeV

Analicemos con algún cuidado el magnterón de Bohr para el electrón,

µe =     =                                         .     (A.8) 2 2 |                                6                          −22                    2 e | ~ (8 , 98742 × 10 ) (6 , 582119569 × 10 ) MeV MeV s c

me           2 × 0,510998946           G s c MeV

Tenemos finalmente,

µ                −15 = 5 , 7883818012 × 10 MeV/G.               (A.9)

e

Mientras que para |e|, tenemos,

MeV2

|      2                     −15 e | ~ c = 5 , 91571 × 10         .                      (A.10)

G

Finalmente, para eB , tenemos,

eB 2              2                       −15           2 ~ c = 2 µ m c B = 5 , 91571 × 10 B MeV.            (A.11)

e   e

En esta expresión, debemos emplear B en Gauss, con lo cual el valor final nos queda en MeV2                               15 . Por ejemplo, si B = 10G, entonces,

eB 2                     2                          15 ~ c = 5 , 91571 MeV , para B = 10 G.
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Vale la pena repetir este análisis para el magnetón nuclear. Haremos el análisis para el protón. Notemos que µ eme = µpmp. Tenemos entonces,

µ    |e|~           2            2                    −15          2 p = ⇒ eB ~ c = 2 µ p m p c B = 5 , 91571 × 10 B MeV.        (A.12) 2 m p
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Apéndice B

 

 

Cálculo de la densidad de número

 

En este apéndice mostraremos cómo calcular la densidad de número ρ(µ, T ); esto es, el número de partículas por unidad de volumen; a partir del número de ocupación n(ε), dado por la ec. (2.6). Excepto al final, cuando analicemos las unidades, en este apéndice emplearemos unidades naturales, para las que c = ~ = 1. En primer lugar y por simplicidad, supondremos que el sistema no está degenerado. Calcularemos esta densidad a partir de la definición de n(ε), como el número de partículas con energía ε. Sin perder generalidad, agregaremos el índice j , a la energía; suponiendo entonces que las energías toman valores discretos. La densidad de número es entonces,

ρ(µ, T ) ≡       n(εj ),                         (B.1) V 1 X

j

donde V , es el volumen y sumamos sobre todas las partículas contenidas dentro del volumen V . De esta manera, contamos el número de partículas dentro de un volumen “representativo”, dividimos por el volumen total y tenemos la densidad de número. Esto es formalmente inobjetable, pero el calcular algo a partir de esta expresión no resulta evidente. Para contar con una expresión operativamente útil, debemos construir un modelo que nos permita seguir adelante. En primer lugar, debemos definir el espacio de Hilbert donde nos movemos. Para ello, debemos diferenciar dos situaciones: i. Ausencia de niveles de Landau y ii. Presencia de niveles de Landau. Analizamos cada uno de estos casos separadamente. Antes de ello, algunas hipótesis son comunes a las dos situaciones: supondremos que tenemos materia infinita. Físicamente esto nos dice que podemos despreciar los efectos de borde. Conceptualmente, si nos movemos dentro de materia proto–neutrónica lejos de la superficie, esperamos que el sistema sea invariante frente
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a cualquier traslación espacial. También supondremos que vale el modelo de partícula independiente (ver Sec. 15.1 en [1]).

 

B.1.   Ausencia de niveles de Landau

Tomamos un sistema de coordenadas cartesianas para el espacio. En coordenadas cartesianas consideramos un cubo de lados                     3 L y volumen V = L. Teniendo en cuenta las hipótesis del párrafo anterior, tomamos ondas planas normalizadas en un volumen V , según cada dirección de los ejes cartesianos. En particular, para el eje–x ˆ, consideramos una función de onda de la forma ik x x e, limitada a la longitud L. Lo que hacemos ahora es pedirle a la función de onda que cumpla condiciones periódicas cada longitud L, en cada dirección espacial. En particular, para el eje–x ˆ, tenemos,

eik x x      ik (x+ xL) = e,                                  (B.2)

lo cual implica que,

eik L x = cos(k L) + i sin(k L) = 1. (B.3)

x             x

Este requisito cuantifica los posibles valores de kx, según,

kx =     ,       nx = 0, ±1, ±2, ...                 (B.4) L 2πnx

Con expresiones análogas para los ejes–y ˆ, z ˆ. Pensando que L puede tomar un valor grande (aunque finito), pasamos de variables discretas a continuas, por medio del reemplazo,

n X ∞      Z L ∞ → dkx .               (B.5) 2 π −∞ x = −∞

Tomando en cuenta ahora los otros dos ejes coordenados, tenemos,

n X    3    Z L → dk .               (B.6) (2 π ) 3 x ,n y ,n z

Vale la pena recordar la expresión para la energía de partícula independiente para el neutrón,

εn(k, sn) = m +      − µN Bsngn,                 (B.7) 2 (    2 ~ k ) m

que nos permite reescribir la dependencia funcional del número de ocupación como,

n(εj ) → n(k, sn). (B.8)
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Finalmente, reemplazando la ec. (B.6) en la ec. (B.1), y recordando que 3  V  =  L,

tenemos,

1   X Z

ρ(µ, T, B ) =              dk n(k, sn)                  (B.9) (2 π ) 3 s n

Agregamos la suma discreta sobre spin, pues de la ec. (B.1), sabemos que debemos sumar sobre todos los estados de energía. Por el empleo de la energía de partícula independiente con un campo magnético, agregamos la dependencia con B. Debemos notar que esta cantidad tiene unidades de Volumen−1 (densidad de número), ya que los productos kxx, kyy y kzz son adimensionales, por lo que [kj ] = 1/longitud y por lo tanto [dk] = 1/Volumen. Notemos que si los niveles de energía están degenerados, debemos incluir un factor de degeneración. La expresión dada por la ec. (B.9), vale para partículas sin carga, como el neutrón, pero también para cualquier partícula en ausencia de campo magnético.

 

B.2.   Presencia de niveles de Landau

En la Sec. 2.2, mostramos los estados cuánticos de una partícula cargada en un campo magnético constante. Tomamos al campo magnético en la dirección del eje–z ˆ. La cuantificación de Landau ocurre en el plano–xy; mientras que la partícula se comporta como una partícula libre en el eje–z ˆ. Para fijar la notación, es conveniente comenzar recordando la expresión para la energía de partícula independiente para el protón,

(     2 ~ k )

ε                        z ( k , s , N ) = m +   + µ B(2N + 1 − s g ).         (B.10)

p    z    p     p                          N        p           p p 2 m

A partir de esta expresión, redefinimos el número de ocupación como,

n(εj ) → n(kz, sn, Np). (B.11)

Para calcular el número de ocupación, la ec. (B.1) sigue siendo válida. El problema es el de encontrar la expresión adecuada a nuestro espacio de Hilbert. En primer lugar, notamos que en el eje–z ˆ, vale las mismas consideraciones que en la sección anterior, por

 

lo cual,                                           Z ∞ X L ∞ → dkz .                         (B.12) 2 π −∞ n z = −∞
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Para evitar dudas: en este eje tenemos un continuo, que discretizamos pidiendo la peri-odicidad de la función de onda en una longitud arbitraria L, lo suficientemente grande para pasar de una suma discreta nuevamente al continuo.

La suma sobre los niveles de Landau es una suma discreta y queda como tal. Sin embargo, debemos notar que esto ocurre en el plano–xy y existe una indeterminación en el ángulo sobre este plano en que se encuentra el estado. Esto es, existe una degeneración inherente a los niveles de Landau. Esta degeneración vale,

eBA

degeneración de los niveles de Landau →      ,

2π

donde e es el módulo de la carga del electrón, B es la magnitud del campo magnético y A es el área en el plano–xy. La demostración de esta expresión fue dada en la Sec. 2.2 (ver ec. 2.31); además, una discusión interesante se puede encontrar en [5]. De este modo, la suma sobre los niveles de energía se escribe como,

X       Z eBA X L ∞ → dk z ,          (B.13) 2 π 2 π −∞ j N p

notando ahora que V = AL, tenemos finalmente,

eB   X Z ∞

ρ(µ, T, B) =                  dk z n(kz, sp , Np)             (B.14) (2 π ) 2 −∞ N p , s p

 

En principio, la suma sobre Np va hasta infinito. Operativamente se suma hasta que los términos de la suma se hacen irrelevantes (ver Apéndice B en [20]). Además, en esta expresión final, agregamos la suma sobre spin.

 

B.3.   Límite para B = 0.

Las expresiones dadas por las ecs. (B.9) y (B.14), son válidas en presencia de un campo magnético localmente constante para partículas sin carga y con carga eléctrica, respectivamente. El límite para B = 0 es trivial para el caso de la ec. (B.9), ya que simplemente se hace B = 0 en la expresión para la energía de partícula independiente (ec. B.7). Este límite para el caso de una partícula cargada, es notablemente complejo. No haremos una demostración rigurosa pues excede el objetivo de este seminario. Solo
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daremos algunas prescripciones y la bibliografía para quien tenga un interés particular en el tema. Nuestro objetivo es, partiendo de la ec. (B.14), obtener su límite cuando el campo magnético tiende a cero. Empleamos la siguiente prescripción dada en [22]:

X   dk x R      R dky

→      .            (B.15)

N       2π(eB ) p

Reemplazando esta expresión en la ec. (B.14), obtenemos inmediatamente la ec. (B.9); excepto por las energías de partícula independiente, que debemos reemplazar por las correspondientes a la ausencia de campo magnético.

Probablemente esta sea la justificación más débil de todo este escrito. Una forma alternativa para justificar este límite es llevar adelante una verificación numérica: tomar valores para la intensidad del campo magnético cada vez más pequeños, compararlos con la expresión para B = 0 (que es simplemente la ec. B.9), y ver su convergencia. Esto no es numéricamente simple, pues el número de niveles de Landau que debemos sumar crece cuando la intensidad del campo magnético decrece.

Para encontrar una fundamentación sólida, debe revisarse el Apéndice B en [21], junto al trabajo de Kaminker y Yakovlev [23]. Debemos advertir al lector, que este trabajo está escrito en ruso, con letras cirílicas. Sin embargo, los traductores en red, lo traducen al castellano con la suficiente exactitud para poder entender el artículo.

 

B.4.   Unidades

El tema de las unidades no debe ser subestimado, pues no solo es indispensable a la hora de hacer cualquier cálculo numérico, sino que nos enseña a entender mejor el problema. Las unidades en la ec. (B.9), son simples. Como ya lo nombramos, el producto k · r es adimensional. Luego, si medimos la distancia en Fermis (fm), entonces k, tiene unidades de fm−1                                             −3 y la densidad de número tiene unidades de fm . Sin embargo, es común emplear el impulso p, en lugar del número de onda k, donde,

p = ~k,

Reescribimos ahora la ec. (B.9),

1    X Z

ρ(µ, T, B) =                 dp n(p, sn).                (B.16) (2 π ) 3 ~ 3 s n
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Analicemos las unidades de p:

energía tiempo     energía

[p] = [~k] =                =          ,

longitud       velocidad

Avancemos un poco sobre esta idea, sabemos que,

[      ] = [        ] = energía, 2 2 p2             2 ( pc ) m   2mc

luego,

[ 2 2              2 p c ] = energía.

Si medimos la energía en MeV, las unidades de p, resultan,

[p] = MeV/c.

Es común el uso de las llamadas “unidades naturales”, para las que c = ~ = 1. En unidades naturales debemos escribir la ec. (B.16), como,

1   X Z

ρ(µ, T, B) =              dp n(p, sn),                  (B.17) (2 π ) 3 s n

Operativamente, es común trabajar con una cierta mezcla de unidades, donde tomamos a p, en unidades de MeV, el 1/c de las unidades del impulso lo sacamos afuera de la integral y tenemos,

1     X Z

ρ(µ, T, B) =                    dp n(p, sn),               (B.18) (2 π ) 3 ( ~ c ) 3 s n

donde,

~ ∼ c = 197,3 MeV fm,

con lo cual la densidad de número nos queda nuevamente como fm−3.

Las unidades de las energías de partícula independiente nos quedan en MeV, pensando a la masa y al impulso en unidades de MeV, también. Vayamos ahora a la ec. (??). Reescribimos esta expresión en función de pz,

eB    X Z ∞

ρ(µ, T, B) =                      dpz n(pz , sp, Np),           (B.19) (2 π ) 2 ( ~ c ) 3 −∞ N p

donde además dividimos por     3 ( ~ c ) . De la ec. (A.11), sabemos que eB tiene unidades de MeV2, las de p son MeV y las de ~c, son MeV fm, con lo que la ec. (B.19), queda con

z

unidades de fm−3, como era de esperarse.
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Unidades MKSA y CGS

 

En el primer curso de física, uno de los primeros temas es el de los sistemas de unidades MKS (metros-kilogramos-segundos), luego extendido al MKSA para agregar el Ampere; junto al CGS (centímetro-gramo-segundo). Vale la pena señalar que el sistema MKSA es también llamado SI (sistema internacional); mientras que el sistema CGS también es conocido como sistema de Gauss.

Si nos limitamos a la mecánica, el paso de un sistema a otro es trivial. Sin embargo, cuando incluimos al electromagnetismo, tal cambio deja de ser trivial y es conveniente mostrar en el presente Apéndice ciertas prescripciones para pasar de un sistema al otro, con el fin de evitar confusiones.

 

C.1.   Introducción al tema

La divergencia entre los sistemas MKSA y CGS para el caso del electromagnetismo, parte de la definición de carga eléctrica. En el sistema CGS, definimos la carga según la fórmula,

F =    ˆ r. 2 q1 q2

r

La unidad de carga se designa con el nombre de “unidad electrostática de carga” (statC): decimos que cuando dos cargas iguales, separadas por 1cm experimentan una fuerza de 1dina, entonces el valor de la carga es de 1statC.

Por otra parte, en el sistema MKSA se define en primer lugar la unidad de corriente, el Ampere, y dada la corriente se define la unidad de carga; que naturalmente es el Coulomb.
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En este caso, la expresión para la fuerza electroestática entre dos cargas resulta,

F    1   q1 q2 = r ˆ. 4 πε 0 r 2

También en el sistema MKSA, vale la relación,

1

c = √    .

ε0µ0

En el sistema CGS no existen las constantes ε0 y µ0, pero en muchas expresiones aparece la velocidad de la luz c, como veremos enseguida.

 

C.2.   Las ecuaciones de Maxwell

Naturalmente, el electromagnetismo está contenido en las ecuaciones de Maxwell y mostraremos ahora las expresiones para las mismas en los dos sistemas de unidades.

Cuadro C.1: Las ecuaciones de Maxwell, junto a la fuerza de Lorentz, para los sistemas de unidades MKSA y CGS

Unidades MKSA           Unidades CGS

Ley de Gauss (E)                   1 ∇ · E = ρ(r)           ∇ · E = 4π ρ(r)

ε0

Ley de Gauss (M)           ∇ · B = 0               ∇ · B = 0

Ley Ampere                      ∂E               1 ∂E   4π ∇ × B − ( ε 0 µ 0 ) = µ 0 J ∇ × B − = J ∂t c ∂t c

Ley de Faraday                    ∂ B                  1 ∂B ∇ × E + = 0 ∇ × E + = 0 ∂t c ∂t

Fuerza de Lorentz                                             1 F = q ( E + v × B ) F = q ( E + v × B)

c

 

En el cuadro C.1, mostramos las ecuaciones de Maxwell, junto a la fuerza de Lorentz, para los sistemas de unidades MKSA y CGS. Las unidades MKSA son las más difundi-das, pues son más adecuadas para el uso ingenieril y eso hace que el instrumental de
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laboratorio adopte esas unidades. Sin embargo, las unidades CGS o de Gauss, son más prácticas para los desarrollos teóricos. Esto se debe a que en unidades de Gauss, los campos eléctrico y magnético (E y B, respectivamente), tienen las mismas unidades. Es más, los campos E, B, P , M , D y H, donde agregamos la polarización, magne-tización, inducción eléctria e inducción magnética, poseen todos las mismas unidades. Además, el potencial escalar eléctrico Φ y el potencial vector magnético A, poseen las mismas unidades entre sí (pero diferentes a las de E, etc.). De esta manera, analizando las dimensiones de una ecuación, es fácil ver dónde debemos multiplicar o dividir por la velocidad de la luz, c. Esto es fácilmente comprobable de la lectura del cuadro C.1.

Cuadro C.2: Unidades MKSA y CGS para el electromagnetismo. En esta tabla, el valor 2,9979... se refiere a los decimales correspondientes a la velocidad de la luz, c.

 

Magnitud     Unidades MKSA Unidades CGS               Conversión

Carga                                                              9 q C statC 1 C = 2,9979... × 10 statC

Potencial                                                                     −2 Φ Volt statvolt 1 V = (1/2,9979...) × 10 statvolt

Campo                                                  −4 E Volt/m statvolt/cm 1 V/m = (1/2,9979...) × 10 statvolt/cm

Campo                                                4 B Tesla Gauss 1 T = 10 G

 

En el cuadro C.2, mostramos el valor numérico para convertir unidades electromag-néticas de un sistema a otro.

 

Facultad de Cs. Astronómicas y Geofísicas   |  UNLP                                                         153

Apéndice D

 

 

Notación relativista

 

En este apéndice mostraremos algunos elementos de la notación relativista, junto a ciertas propiedades útiles de las matrices γ (definidas en las ecs. 4.17). Como sabemos, en términos relativistas se trabaja con cuadrivectores, que en el caso de la posición en el espacio–tiempo, incluyen las tres componentes espaciales y el tiempo multiplicado por la velocidad de la luz (con lo cual las cuatro componentes tienen las mismas unidades). Designamos a este cuadrivector como   µ x, con µ = 0, 1, 2 y 3:

x0               1              2              3 = ct, x = x, x = y, x = z.                  (D.1)

Debemos notar que el índice µ, se escribe como un superíndice. Cuando es así, se habla de cuadrivectores contravariantes. Cuando se trata de un subíndice, se designan como cuadrivectores covariantes. La relación entre ambas cantidades viene dada por,

x       ν = g x ,                         (D.2)

µ     µν

donde g µν se denomina tensor métrico y viene dado por,

           

 

g       1   0    0    0      0 − 1 0 0   = µν   .                 (D.3)    0 0 − 1 0   

0   0    0   −1

Notar que en la ec. (D.2), empleamos la llamada “convención de Einstein”, que consiste en sumar sobre los índices repetidos de 0 a 3. Usando esta convención, tenemos,

g    µν g = 4.                               (D.4)

µν
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Técnicamente,                    µν g es la inversa de g ; pero un simple cálculo muestra que son iguales.

µν

Naturalmente,

xµ     µν = g x .                             (D.5)

ν

En esta misma línea, para las matrices γ (recordemos que están definidas en las ecs. 4.17); tenemos,

γ       0 = γ

0

γ         i = − γ,    i = 1, 2, 3.                     (D.6)

i

Damos ahora algunas definiciones,

γ 5           0 1 2 3 = iγ γ γ γ,

     

Σ    σ   0  ≡   ,

0   σ

σµν        i    µ ν     ν µ ≡ ( γ γ − γ γ).                        (D.7) 2

Enseguida mostraremos algunas propiedades de las matrices γ . Antes de ello, daremos otra definición: para cualquier cuadrivector   µ a, definimos la matriz de 4 × 4, /a (debe leerse “a slash”), como,

/a            µ ≡ a γ.                                            (D.8)

µ

Veamos ahora algunas propiedades de las matrices γ:

γ µ ν     ν µ         µν γ + γ γ = 2 g ,

γ µ γ = 4,

µ

γ   ν µ            ν γ γ = − 2 γ ,

µ

γ ν λ µ          νλ γ γ γ = 4 g,

µ

/a/b + /b/a   = 2a · b,

γ    µ /aγ   = −2/a,

µ

γ    µ /a/bγ   = 4a · b.                         (D.9)

µ
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Sobre valores de las trazas,

T r(I ) = 4,

T r   µ ν          µν ( γ γ ) = 4 g,

T r(/a/b) = 4a · b, T r   5 ( γ ) = 0.                           (D.10)

Finalmente, mostramos algunos valores de anticomutadores. Recordemos la definición de un anticonmutador: {A, B } ≡ AB + BA. Puede demostrarse que,

{ µ   ν          µν γ , γ } = 2 g, { µ   5 γ , γ} = 0.                            (D.11)
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Apéndice E

 

 

Constantes para el mesón–ω y otros

 

En este apéndice mostramos el valor numérico de algunas constantes físicas y discu-timos brevemente sus unidades. Comenzamos con los siguientes valores,

g ω = 0,653

M 2 c = 80400MeV

ω

Notemos que,

    4 g ω 1           −5 −1 = 6 , 61093 MeV s M ω c 2 ~

Vale la pena indicar que la ec. (4.62), se puede reescribir como,

Γ     1       Z 4   2   2 g ( n ω 1 m c − m p c )           6 β = dE − e J ( E − e ) c.        (E.1) (4 π ) 3 M 2 ω c ~ 2 m e c

Sobre las unidades, por inspección de la ec. (4.57), notamos que,

[J (E − 6          4 e ) c ] = MeV,

y de la ec. (E.1),

[dE − e] =MeV,

 

"     # 4 g ω 1    −5 −1 = MeV s M ω c 2 ~

De este modo,

[Γβ ] = Hz = 1/s.

Obviamente que para la vida media, tenemos τβ ≡ 1/Γβ, por lo cual [τβ ] = s.
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Apéndice F

 

 

Cálculo del elemento de matriz débil

 

h|M     2 − |i e p,νn

 

Calcularemos en forma aproximada el elemento de matriz h|M −    2 e p,νn |i. Esto ya debe llamar la atención, pues esperaríamos calcular el elemento h|M −    2 e p ¯ ν,n |i, que resulta ser igual; aunque el primero posee un planteo más simple. Comenzamos definiendo la densidad Lagrangiana (ver por ejemplo el libro de Ryder, Ref. [12]),

L    1                    !              ! 2 g ω ¯ µ = − ψ − ¯ e γ (1 − γ 5 ) ψ ν ψ p γ µ ( c V − c A γ 5 ) ψ n .    (F.1) 8 M ω c 2

Aquí tenemos nuestra primera dificultad, pues las cantidades ψn, ψp, ψ − y ψ no son e ν funciones de onda, sino operadores de campo. El comprender acabadamente su signifi-cado requiere del estudio de la Teoría Cuántica de Campos, que excede este seminario. Sin embargo, podemos ignorar esta expresión sin mayor culpa e ir al elemento de matriz, donde empleamos espinores,

M    1                   !              ! 2 g ω µ − − e p,νn = − u e γ (1 − γ 5 ) u ν u p γ µ ( c V − c A γ 5 ) u n .    (F.2) 8 M 2 ω c

Los spinores para el protón, neutrón y electrón están dados en las ecs. (4.22), donde debemos reemplazar la masa por la correspondiente a cada partícula. Como estamos considerando al neutrino como una partícula sin masa en reposo, la expresión para su spinor es diferente. No daremos su expresión, pues como mostraremos enseguida, no se necesitan las expresiones explícitas de los spinores para calcular al elemento de matriz. Es conveniente expresar al cuadrado del elemento de matriz como la contracción de un
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tensor leptónico µα l, con un tensoar hadrónico H   :

µα

|M    2      1     4 g ω µα − e p,νn | = lHµα ,                (F.3) 2 64 M ω c

con,                                        !                  !

lµα        µ                    α − = u ν γ (1 − γ 5 ) u − (1 e u e γ − γ5) uν ,             (F.4)

y                                        !                    !

Hµα = un (cV + cAγ5) γµup   upγα (cV − cAγ5 ) un   .         (F.5)

Para hacer las sumas sobre spin empleamos el llamdo “truco de Casimir” [11], que nos permite efectuar las sumas sobre spin evaluado trazas. Introduciremos dos trazas, µα  L

y H µα de los tensores leptónico y hadrónico, respectivamente. Mostraremos enseguida sus expresiones. Tenemos entonces,

h|M     2       1     4 g ω   µα − e p,νn | i = LHµα.               (F.6) 64 M 2 ω c

Recordemos que sumamos sobre los estados finales y promediamos sobre el estado inicial. Analicemos cada traza por separado.

F.0.1.   Traza leptónica

El tensor leptónico:

lµα           µ            †      α − = ( u − e γ (1 − γ 5 ) u ν ) ( u e γ (1 − γ5) uν ).             (F.7)

Usando las propiedades de las matrices gamma, el adjunto se puede escribir como,

(u − µ            †       †   µ         † †        µ e γ (1 − γ 5 ) u ν ) = u ( γ (1 − γ )) u u   − γ ) u −,    (F.8) ν 5 ν 0 = ν γ (1 5 e

tenemos,

l µα          µ                 α − = u ν γ (1 − γ 5 ) u − e u e γ (1 − γ5) uν .               (F.9)

Empleando ahora el truco de Casimir,

X µα   µα l = L                  (F.10)

spins

donde,

Lµα          µ             α                    µ     α         µ     α = tr ( γ (1 − γ 5 /p ) −        5 /p γ (1 − γ ) ) = 2 tr ( γ /p −        5 /p γ + γ γ /p γ/p (F.11) ) .

e                                                       − ν e ν e     ν

Despreciamos la masa del neutrino. Luego de un poco de álgebra, tenemos,

L µα       µ   α    µ α     µα              µαγλ − = 8( p − p + p p − − g ( p · p ) − ip − p ).         (F.12) e ν ν e ν e e γ νλ
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F.0.2.   Traza hadrónica

Seguimos pasos similares al caso anterior,

H               † = ( u γ ( c − c γ ) u ) (u γ (c − c γ ) u ) ,      (F.13)

µα        p µ   V     A 5   n     p α   V     A 5   n

el adjunto resulta,

(u 0                                               †            0                      †   0 n γ µ ( c V − c A γ 5 ) u n ) = u n γ ( γ µ ( c V − c A γ 5 )) γu 0 n ,           (F.14)

realizando las sustitución,

γ 0                      †   0 ( γ ( c − c γ )) γ = (c   + c γ ) γ ,                 (F.15)

µ   V     A 5           V     A 5   µ

tenemos,

H             0 µα = u n ( c V + c A γ 5 ) γ µ u n u 0 n γα (cV − cAγ5 ) un .         (F.16)

La suma sobre spin, resulta entonces,

Hµα = tr((cV + cAγ5) γµ(/p + mp)γα (cV − cAγ5) (/p + mn)). (F.17)  p  n

Para evaluar la traza, elejimos el sistema de referencia donde el neutrón está en reposo. Por conveniencia, separamos esta suma en tres contribuciones, proporcionales a 2 2  C  ,  C

V A

and cV cA, respectivamente. Desarrollando cada contribución, tenemos,

H V           2 = 2 c (p p     p p +   − g (p · p ) + m m g ) ,

µα        V   pµ nα    pα nµ    µα   p   n      n p µα

HA       2 = 2 c (p p + p p       ( · p ) − − g p m m g ) ,

µα        A   pµ nα    pα nµ    µα   p   n      n   p µα

HV A                         γ λ = − 4 i c c p p ,                                      (F.18)

µα            V A µαγλ p n

donde por simplicidad omitimos el índice de spin en cada w. De esta manera, tenemos finalmente,

H s         V        A       V A = H + H + H.                      (F.19)

µα     µα     µα     µα

F.0.3.   Evaluación de h|Me−    2 p,νn | i

Para evaluar finalmente el elementos de matriz, debemos realizar la contracción de la contribución leptónica y hadránica. Para ello, usamos la propiedad,

ξφγν                ξ φ     ξ φ = − 2 ( δ δ − δ δ),

λργν          λ ρ     ρ λ
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obtenemos entonces,

h|M     2          1     4 g ω   2    2 − | i = [( c + c )((p · p −)(p · p ) + (p · p )(p e p,νn V A p e n ν p νn · p −)) e 2 M 2 ω c

−   2      2                    − ( c − c ) m m ( p · p) V A n p ν e + 2c V cA((p    − p · p e )(pn · pν ) − (p · pν )(pn · p − e))].            (F.20)

Vemos la convinación de tres productos diferentes. Del análisis numérico resulta que se puede reemplazar,

(pp · pν)(p      − n · p e)   → (p · p − e)(pn · pν ),

m              − n m p ( p ν · p − e ) → ( p p · p e)(pn · pν ).           (F.21)

Naturalmente, hacemos esta aproximación pues conduce a un buen resultado, ya que analíticamente es incorrecta. De este modo, tenemos finalmente,

h|M| 2      1    4 g ω   2     2 i = ( c + 3 c ) (p   p )(p · p − ).          (F.22) V A n · ν ¯ p e 2 M ω c 2

Esta es la expresión que empleamos para el cálculo de la vida media del neutrón.
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Comentario final

 

Esperaría no equivocarme al afirmar que todo tema de cualquier disciplina científica, es un tema abierto. En física, uno de los primeros modelos completos es el de las Leyes de Newton. Estas leyes representan una síntesis del conocimiento de la mecánica clásica en verdad maravillosa. Quizá constituyan el tema más estudiado en física. Sobre ellas, surgieron restricciones en su aplicación debido a la Mecánica Cuántica y la Teoría de la Relatividad. Pero aún dentro del rango de aplicabilidad de las mismas, existen problemas, como el problema de tres cuerpos, sobre los que aún se trabaja. En astrofísica, la ve-locidad de rotación de ciertas galaxias es un problema abierto, donde algunos proponen la existencia de materia oscura; mientras que otros dudan de la validez de la Ley de Gravitación Universal para distancias grandes.

Si aceptamos que todos los temas de estudio dejan lugar para nuevas investigaciones, debemos ser claros en que el grado de avance en cada tema es diferente. Estos cinco seminarios no constituyen trabajos originales, sino que dan cuenta de trabajos ya pub-licados (donde hemos dado la bibliografía correspondiente). Aún así, buscamos temas que dejan abiertos más interrogantes de los que resuelven. Claro, no es nuestro objetivo el esperar que el lector aborde estos problemas. Nuestro objetivo es modesto y es que el alumno como último tema para finalizar el curso de Mecánica Cuántica, estudie una aplicación de los contenidos del curso, en un tema que va un poco más allá del curso en sí. No tanto por el contenido del tema, sino más bien por el valor formativo en abordar una metodología de análisis nueva, partiendo de los contenidos del curso. Junto a esto, el saber que por la misma línea de trabajo se llega a un problema abierto, puede ser un incentivo interesante.

En resumen, el desafío no es comprender algo acabadamente, sino realizar el esfuerzo por abordar un problema nuevo, con más interrogantes que certezas y por la satisfacción de saber un poco más, por modesto que sea.
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